Cho n thuộc N sao hãy chứng tỏ :
1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
D=1.2 + 2.3 + 3.4 + ....+ n.(n+1) với n thuộc N sao . Chứng tỏ 3D là tích của 3 số tự nhiên liên tiếp
E= 1.2.3 + 2.3.4 + ..... + n.(n+1).(n+2)với n thuộc N sao
hãy chứng minh
tbc của 3 số là 96. tổng của stn và sth là 148. tbc của số thứ 1 và số thứ 3 là 75. tìm ba số
ai biết làm ko
Cho n thuộc N* chứng tỏ rằng : 1/2^2+1/3^2+...+1/n^2
1/2^2<1/1*2
1/3^2<1/2*3
...
1/n^2<1/(n-1)*n
=>1/2^2+1/3^2+...+1/n^2<1-1/2+1/2-1/3+...+1/n-1-1/n=1-1/n=(n-1)/n<1
Cho F=1/1^2+1/2^2+1/3^2+1/4^2+...1/(n-1)+1/n^2,(n thuộc N*(.Chứng tỏ rằng :F<2
C=1+2+3+...+n(n thuộc N sao) hãy chứng tỏ 2C là tích của hai số tự nhiên liên tiếp
ko lam ma doi co an
Ta có:
Số số hạng của tổng C là:
\(\left(n-1\right)\div1+1=n\) (số)
Tổng C là:
\(C=\frac{\left(n+1\right)n}{2}\) => \(2C=n\left(n+1\right)\)
Mà n là số tự nhiên => n(n+1) là tích 2 STN liên tiếp
=> đpcm
Bài giải
Ta có :
\(C=1+2+3+...+n=\frac{\left[\left(n-1\right)\text{ : }1+1\right]\left(n+1\right)}{2}=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow\text{ }2C=2\cdot\frac{n\left(n+1\right)}{2}=n\left(n+1\right)\text{ ( Là tích của hai số tự nhiên liên tiếp ) }\)
\(\Rightarrow\text{ ĐPCM}\)
với n thuộc N* hãy chứng tỏ rằng :
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
cho n thuộc N , chứng tỏ ƯCLN ( n2+n +1; n2+ n-1) = 1
Cho hai phân số 1/n và 1/n+1, với n thuộc Z và n khác 0. Hãy chứng tỏ rằng:
1/n .1/n+1=1/n - 1/n+1
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
cho n thuộc N*, chứng tỏ 1/1^2+1/2^2+1/3^2+...+1/n^2 không phải là một số tự nhiên
Đặt \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{n^2}\)
Có \(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{\left(n-1\right).n}\)
\(< -1.\left(\frac{1}{n}\right)< 1.\left(\frac{1}{n}\right)>0\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}< \frac{1}{1^2}+1< \orbr{\begin{cases}1+1\\2\end{cases}}\)
Vậy ta có điều phải chứng tỏ