Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lalisa manoban
Xem chi tiết
Hà Anh
Xem chi tiết
Hồ Thị Hạnh
12 tháng 4 2016 lúc 12:13

1/2 < 2(1/3 - 1/5) 
1/3 < 2(1/5 - 1/7) 
Mà a cũng không thể nhỏ hơn 1 được ! 
======================= 
Xét 1/2 + 1/3 + 1/4 
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3) 
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1) 
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13 
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9) 
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9 
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2) 
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3) 
(1),(2),(3) ---> a > 3 (*) 

Mặt khác 
1/2 + 1/3 + 1/6 = 1 (4) 
1/4 + 1/5 + 1/20 = 1/2 (5) 
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6) 
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7) 
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8) 
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9) 
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10) 
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**) 

Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên. 

==================================== 
Cách khác (tổng quát hơn, trừu tượng hơn) 
Quy đồng mẫu số : 
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ) 
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50 
---> a = (T2+T3+ ... + T50) / M 
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn 
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên.

 Anh bạn trên nhầm rồi ! Sao lại viết : 
1/2 < 2(1/3 - 1/5) 
1/3 < 2(1/5 - 1/7) 
Mà a cũng không thể nhỏ hơn 1 được ! 
======================= 
Xét 1/2 + 1/3 + 1/4 
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3) 
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1) 
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13 
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9) 
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9 
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2) 
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3) 
(1),(2),(3) ---> a > 3 (*) 

Mặt khác 
1/2 + 1/3 + 1/6 = 1 (4) 
1/4 + 1/5 + 1/20 = 1/2 (5) 
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6) 
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7) 
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8) 
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9) 
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10) 
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**) 

Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên. 

==================================== 
Cách khác (tổng quát hơn, trừu tượng hơn) 
Quy đồng mẫu số : 
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ) 
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50 
---> a = (T2+T3+ ... + T50) / M 
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn 
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên

roronoa zoro
Xem chi tiết
ST
9 tháng 1 2018 lúc 13:58

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) (1)

Mà \(A>0\) (2)

Từ (1) và (2) => 0 < A < 1 => đpcm

Trịnh Lương Ngọc Hân
Xem chi tiết
Phạm Đức Anh
26 tháng 9 2023 lúc 12:41

B=1-1/n

 

\(\dfrac{1}{2^3}\) < \(\dfrac{2}{2^3}\) = \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

\(\dfrac{2}{3^3}\) < \(\dfrac{3}{3^3}\) = \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

............................................

\(\dfrac{n-1}{n^3}\)<  \(\dfrac{n}{n^3}\) = \(\dfrac{1}{n^2}\) < \(\dfrac{1}{\left(n-1\right)n}\) = \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\)

Cộng vế với vế ta có:

B = \(\dfrac{1}{2^3}\)+\(\dfrac{2}{3^3}\)+...+\(\dfrac{n-1}{n^3}\)< 1 - \(\dfrac{1}{n}\) < 1

0<B<1 vậy B không phải là số tự nhiên (đpcm)

 

lalisa manoban
Xem chi tiết
lalisa manoban
Xem chi tiết
Lương Thảo Linh
Xem chi tiết
Thiên Sứ Tự Do
9 tháng 5 2016 lúc 9:17

B<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}<1\)

\(=>B<1\)

Vậy B không là số tự nhiên

Love of Angel
9 tháng 5 2016 lúc 9:27

Mình biết Hà Trang xem sách giải trong sách Nâng cao và phát triển toán 6 không qua được mắt mình đâu

Giang Trần
Xem chi tiết
seru
Xem chi tiết
Kudo Shinichi
4 tháng 9 2019 lúc 14:29

Gọi số đó là a \(\left(a\in N\right)\)ta có :
a = 4k+3=5(k-2) +3

=5k-10+3 = 5k-7 

\(\Rightarrow4k+3=5k-7\)

\(\Rightarrow4k+10=5k\)

\(\Rightarrow k=10\)

\(\Rightarrow k=43\)

Vậy số cần tìm là : 43

Chúc bạn học tốt !!!