Chứng tỏ:1 phần 22 +1 phần 32 +1 phần 42+...+1 phần 102<1
Chứng tỏ rằng: 1 phần 101 + 1 phần 102 + 1 phần 103 + .... +1 phần 200 > 7 phần 12
\(S=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(S>\frac{50.1}{150}+\frac{50.1}{200}\)
\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)
\(S>\frac{7}{12}\)
Chúc em học tốt^^
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{7}{12}\)
\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Chứng tỏ rằng: 1 phần 101 + 1 phần 102 + 1 phần 103 + .... + 1 phần 200 > 1
tương tự bài trước bn đưa ra
bn thử tham khảo cách lm của mik r bn tự lm nha
chứng tỏ rằng : 1 phần 101 +1 phần 102 + 1 phần 103 +...+ 1 phần 200 >1 phần 2
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}.\)
mik sẽ làm theo cách ngắn nhất mak cô đã bày :3 sai thì bạn ib mik để mik sửa ạ
ta có \(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
tương tự như vậy .... cho đến
\(\frac{1}{199}>\frac{1}{200}\)
mak t có \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}.\)có 100 phân số
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>100\cdot\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{100}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)(đpcm)
Chứng tỏ:
D= 1/22 +1/32 +1/42 +....1/102 <1
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
......
\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)
hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )
Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)
.........................
\(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)
=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
=> D < 1 - \(\dfrac{1}{10}\)
=>D < \(\dfrac{9}{10}\)
=> D < \(\dfrac{10}{10}\)
Vậy D < 1
D=(1-1phan 2)×(1- 1 phần 3)×(1 - 1 phần 4)...... (1 - 1 phần 10)
Chứng tỏ rằng: 1 phần 2^2+1 phần 4^2+q phần 6^2+.....+1 phần 100^2< 1 phần 2
B) 1 phần 101+1 phant 102+ 1 phần 103 + .....+ 1 phần 200 > 7 phần 12
a/ Tinh giá trị:
\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\)
b/ Chứng minh:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
- Với mọi số tự nhiên n khác không thì luôn có: \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\)
c/ Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
\(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy: \(F>\frac{7}{12}\) .
chứng tỏ
a) 1 phần 101 + 1 phần 102 + 1 phần 103 + ..... + 1 phần 199 + 1 phần 200 <1
b ) 1 phần 101 + 1 phần 102 +...+ 1 phần 199 + 1 phần 200 > 7 phần 12
bài 2 cho a phần b = 1 + 1 phần 2 + 1 phần 3 + 1 phần 4 + 1 phần 5 + 1 phần 6 ( a ,b ∈ N )
chứng tỏ a ⋮7
cần gấp mn ơi trưa nay mình đi học rồi
S= 1 phần 5 + 1 phần 21+ 1 phần 22 + 1 phần 23 + 1 phần 24 + 1 phần 25 + 1 phần 101 + 1 phần 102+ 1 phần 103 + 1 phần 104 + 1 phần 105 < 1 phần 2
Chứng minh :
\(S=\frac{1}{5}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{25}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{105}< \frac{1}{2}\)
Nhóm các số hạng:
\(S=\frac{1}{5}+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{25}\right)+\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{105}\right)< \frac{1}{5}+\frac{5}{21}+\frac{5}{101}< \frac{1}{5}+\frac{5}{20}+\frac{5}{100}=\frac{1}{2}.\)
cho G = 1 phần 100 mũ 2 + 1 phần 101 mũ 2 + 1 phần 102 mũ 2 +...+ 1 phần 198 mũ 2+ 1 phần 199 mũ 2
chứng minh rằng : 1 phần 200 < G< 1 phần 99
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
chứng minh 1phần 2 - 1 phần 4 + 1 phần 8 - 1 phầm 16 + 1 phần 32 - 1 phần 64 + 1 phần 128 - 1 phần 256 < 1 phần 3
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}+\frac{1}{128}-\frac{1}{256}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}\)
\(A+2A=\left(\frac{1}{2}-\frac{1}{4}+...-\frac{1}{256}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{128}\right)\)
\(3A=1-\frac{1}{256}< 1\)
\(\Rightarrow A< \frac{1}{3}\).