Tìm GTNN của biểu thức: A=|x + 5| + (y - 1)^2014 - 2
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
1. a) Ta có:
|x-3| > 0
=> |x-3| + 2 > 2
=> (|x-3| + 2)2 > 22 = 4
|y+3| > 0
=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011
=> GTNN của P là 2011
<=> x-3 = y+3 = 0
<=> x = 3; y = -3.
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Tìm GTNN của biểu thức
A= |x-2014| +|x-1|
Cho x , y ∈ ℤ
a) Với giá trị nào của x thì biểu thức A = 1000 − x + 5 có GTLN; Tìm GTLN đó.
b) Với giá trị nào của y thì biểu thức B = y − 3 + 50 có GTNN. Tìm GTNN đó.
c) Với giá trị nào của x, y thì biểu thức C = x − 100 + y + 200 − 1
có GTNN. Tìm GTNN đó
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
tìm STN x lớn nhất để biểu thức sau có GTNN và GTNN đó = bao nhiêu?
A=(x-2016).(x-2015).(x-2014)......(x-2).(x-1)
tìm STN x để biểu thức :B =(2014+2015+2016):(x-2013) có GTLN và GTLN đó =bao nhiêu?
Cho x+y=5.Tìm GTNN của biểu thức A=|x+1|+|y-2|
\(|x+1|+|y-2|\ge|x+1+y-2|\)
Hay \(|x+1|+|y-2|\ge4\)(Vì x+y=5)
Dâu"=" xảy ra khi x+1 = 0 và y-2 = 0
Vậy A có gtnn là 4 khi x = -1 và y = 2
x+y=5 rồi thay vào kq đi
Cho x,y thuộc Z :
a/ Với giá trị nào của x thì biểu thức của A=2006-|x+5|có GTLN?Tìm GTLN đó?
b/Với giá trị nào của y thì biểu thức của B=|y-3|-9 có GTNN ?Tìm GTNN đó?
c/Tìm GTNN của biểu thức C=|x-100|+|y+200|-1?
GTNN là gì z.tui ko hiểu nên ko giải được!
Bài 1:a)Tìm GTNN của biểu thức
A=|x-1|+3
B=|x-7|-4
b)Tìm GTNN của biểu thức
C=-|x-3|+2
Bài 2:Tính giá trị biểu thức A=x+y biết |x|=5 và |y|=12
HƯỚNG DẪN:Tìm x,y và chia ra các trường hợp (x,y).Sau đó thay x,y để tính A
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3