cho x,y,z thuộc khoảng (0;2)
chứng minh rằng :2(x+y+z)-(xy+yz+xz)<4
giúp mk nha các bạn
cho x,y,z thuộc khoảng -1:1 thỏa mãn x+y+z=0 cm a^2+b^2+c^2>2
cho x,y,z thuộc khoảng 0 đến 1 thỏa mãn x+y+z=0 cm a^2+b^2+c^2<=1+a^2b+b^2c+c^2a
Cho (P): x-2y-2z+1=0, d1:(x-1)/2 = (y-3)/3 = z/2, d2: (x-5)/6 = y/4 = (z-5)/-5. Tìm M thuộc d1, N thuộc d2 sao cho MN song song (P) và khoảng cách từ MN đến (P) = 2
Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)
Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)
Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))
Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)
\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)
Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)
M là giao điểm (Q) và d1 nên tọa độ M là ...
N là giao điểm (Q) và d2 nên tọa độ N là ...
Tìm điểm M thuộc tia Ox sao cho khoảng cách từ M tới mặt phẳng (P) bằng 3 với P : 2 + x + y + z = 0 .
Trong không gian Oxyz, cho hai đường thẳng △ : x + 3 1 = y - 1 1 = z + 2 4 và mặt phẳng (P): x+y-2z+6=0. Biết △ cắt mặt phẳng (P) tại A, M thuộc △ sao cho A M = 2 3 . Tính khoảng cách từ M tới mặt phẳng (P).
A. 2
B. 2
C. 3
D. 3
Tìm x,y thuộc Z biết:
x+y+xy = 0
giúp mk với , mk đang cần gấp , ai nhanh và đúng mk tick nhé! Khoảng 1h nữa cho những người ham toán nhé! :)
\(xy+y+x=0\)
\(\Rightarrow y\left(x+1\right)+x+1=1\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
lập bảng
Ta có : x+y+xy=0
x(y+1) + y = 0
x(y+1) + y+ 1 =1
(y+1)(x+1) = 1
Vì x, y \(\in Z\)
=> x+1; y+1 là ước của 1
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
y+1 | 1 | -1 |
y | 0 | -2 |
Vậy x=y=0 hoặc x=y=-2
k tui nha
cho x ; y ;z thuộc Z thỏa mãn x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0
Cho ba số thực x, y, z thuộc khoảng (0;1) và \(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
a. CMR: \(0< xyz\le\frac{1}{8}\)
b. Tìm GTNN của biểu thức \(P=2\left(x+y+z\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
Mình cần câu a ạ :<
Mình sorry vì hôm trước bảo câu a sai nha
Cách giải câu a này:
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(\Leftrightarrow2xyz=\left(xy+yz+zx\right)-\left(x+y+z\right)+1\)
Ta có BĐT: \(xy+yz+zx\le x^2+y^2+z^2\)(BĐT này chắc bạn thấy nhiều lần roi, mình ko chứng minh lại nha)
\(\Rightarrow2xyz\le\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+1=\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2+\frac{1}{4}\)
\(\Rightarrow2xyz\le\frac{1}{4}\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{2}\)
Xét \(x,y,z>0\Rightarrow xyz>0\)
Vậy \(0< xyz\le\frac{1}{8}\)
cho x ; y ;z thuộc Z thỏa mãn
x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0
x.y-x.z+y.z-z^2+1=0
x.y-x.z+y.z-z^2 =-1
x(y-z)+z(y-z) =-1
(x+z)(y-z) =-1
=> x và y đối nhau
=> x+y=0
cho x ; y ;z thuộc Z thỏa mãn
x . y - x . z + y . z - z^2 +1 = 0
chứng minh x + y = 0