Cho Tam giác MNP vuông tại M có góc P=30 độ. Kẻ tia phân giác góc N tại K.Kẻ KN vuông góc NP
a)C/minh Tam giác ANK=HNK
b)C/minh:Tam giác MNK là tam giác đều
c)C/minh :NK=PK
d)Gọi I là trung điểm của PH C/minh IP=1/2MN
cho tam giác MNP vuông tại M ,có N=60 độ và MN = 8cm . Tia phân giác góc N cắt MP tại K . Kẻ KQ vuông góc với NP tại Q
a) Chứng minh tam giác MNK=QNK
b) Xác định dạng của tam giác MNQ và NKP
c) Tính độ dài cạnh MQ, QP
ai làm dc ko :D
Mik chưa lm đc câu c vì ý 2 câu b bị sai hay s ý.
câu nào vậy đúng hết mà
Nói thế thì tam giác NKP kia chỉ thể là góc tù thôi.
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng.
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)
Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.
d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)
Xét \(\Delta\) NHM và \(\Delta\) NKM có:
^NKM = ^NHM = 90o
NM là cạnh chung đồng thời là cạnh huyền
^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)
Suy ra \(\Delta\) NHM = \(\Delta\) NKM (cạnh huyền - góc nhọn)
Suy ra NK = NH (1) và MK = MH (2)
Xét \(\Delta\)MHD và \(\Delta\) MKA có:
MK = MH (chứng minh ở (2))
^KMA = ^HMD (đối đỉnh)
MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)
Suy ra \(\Delta\)MHD = \(\Delta\) MKA (c.g.c) (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)
Suy ra KA = HD (3)
Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.
Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.
Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD của góc B. Đường thẳng đi qua A và vuông góc với BD cắt BC tại E.
a) Chứng minh: BA=BE
b) Chứng minh: tam giác BED là tam giác vuông
c) Giả sử góc C = 30 độ. Tam giác ABE là tam giác gì? Vì sao?
Cho tam giác ABC vuông tại B có \(\widehat{A}\)= 60 độ . Kẻ BK vuông góc AC (K thuộc AC ), trên tia KC lấy điểm D sao cho KD = KA.
a) Chứng minh tam giác AKB = tam giác DKB
b) Chứng minh tam giác BAD là tam giác đều
c) Chứng minh BD là phân giác của góc KBC
d) Kẻ DE vuông góc BC (E thuộc BC ) trên tia đối của tia KB lấy điểm M sao cho KM = KB . Chứng minh M, D, E thẳng hàng
Cho tam giác ABC vuông tại A có góc C =30 độ. tia phân giác của góc B cắt AC tại D.Kẻ DE vuông góc BC( E thuộc BC)
a.Chứng minh BA=BE
b. Gọi I là giao điểm của tia ED và BE.CMR DI=DC
c. Chứng minh tam giác BIC đều
d.Chứng minh ID=2DE
Bài 1: Cho tam giác ABC vuông tại A và có đường phân giác BE ( E € AC). Kẻ ED vuông góc BC ( D € BC)
a) CMR: Tam giác ABE = tam giác DBE
b) CMR: BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao của AB và DE. C/M AD song song FC
Bài 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) chứng minh: AD = DH
b) so sánh độ dài cạnh AD và DC
c) chứng minh tam giác KBC là tam giác cân
Mình kẻ hình đc rồi... nhưng hôg zải đc... zúp mình vs
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
Cho Tam Giác ABC đều kẻ Ah vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE=BC. Trên tia đối của tia CB lấy điểm D Sao cho CB=CD.
A, Chứng minh rằng tam giác AEB=ADC
b, Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng tam giác CHF cân
c, Chứng minh rằng AD//HF
d, Từ B kẻ Bm Vuông góc AE tại M, Từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của Bm và Cn . Chứng Minh AI là phân giác của góc BAC.