So sánh các số tự nhiên a va b biết rằng:
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
So sánh các số tự nhiên a va b biết rằng:
\(\frac{1+2+3+...+a}{a}
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b
so sánh các số tự nhiên a và b biết rằng:
\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
So sánh các số tự nhiên a , b biết : \(\frac{1+2+3+...+a}{a}
\(\frac{1+2+3+...+a}{a}=\frac{\left(1+a\right).a}{2.a}=\frac{1+a}{2}\)
\(\frac{1+2+3+...+b}{b}=\frac{\left(1+b\right).b}{2.b}=\frac{1+b}{2}\)
\(\Rightarrow\frac{1+a}{2}
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
So sánh các số tự nhiên A và B , biết rằng :
a ) A = 1 + 2 + 3 + ..... + 1000 , B = 1.2.3....11;
b ) A = 1.2.3... 20, B = 1 + 2 + 3 + 1000000
A= số số hạng của A là (1000-1):1+1=1000
tổng A là: 1000+1x1000:2=500500
B=39916800
Vậy A<B
b, A<B
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
a, So sánh \(^{36^{25}}\) và \(^{25^{36}}\)
b, Chứng minh rằng : nếu p và p2 +2 là các số nguyên tố thì p3+2 cũng là số nguyên tố
c, Tìm 3 số a,b,c là số tự nhiên khác 0 biết: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Câu này đã có trong câu hỏi tương tự hoặc banjc so thể vào Toán vui hằng tuần, đã có bài toán này rồi nhé !
https://olm.vn/hoi-dap/detail/7521148738.html bạn tham khảo nha
Mình xin lỗi, mình đã sửa lại câu hỏi rồi, nhờ các bậc tiền bối giúp với ạ
1/ Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\). Hãy so sánh A và 0,01
2/Cho các số: 5;6;7;8;17. Chứng minh rằng tổng các các số nghịch đảo của các số đó khô ng phải là số tự nhiên
Tìm các số tự nhiên a và b biết rằng:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\left(b-a=2\right)\)
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{2}{3}\)
<=> \(\frac{2}{ab}=\frac{2}{3}\)
<=> ab = 3
Nên : a,b thuộc Ư(3) = {1;3}
Mà b - a = 2
Vậy a = 1 thì b = 3
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{2}{ab}=\frac{2}{3}\Rightarrow ab=3\)
Tới đây giải hiệu tích
a(a+2) = 3
=> a2 + 2a = 3
=> a2 + 2a - 3 = 0
=> a2 - a + 3a - 3 = 0
=> a(a-1) + 3(a-1) = 0
=> (a+3)(a-1) = 0
=> a = -3 hoặc a = 1
Vì a là số tự nhiên nên a = 1
=> b = 3
Vậy (a,b) = (1,3)