Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Vân
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Đinh Đức Hùng
21 tháng 3 2016 lúc 14:52

Giải :

n2 + 2n + 12 = ( n2 + 2n + 1 ) + 11 = ( n + 1 )2 + 11

Đặt ( n + 1 )2 + 11 = m2

Ta xét m2 với các số tự nhiên :

Ta có : m2 = 12 ; 22 ; 32 ; 42 ; ....

Khi xét , ta thấy m2 = 62 ( hợp lí )

=> ( n + 1 )2 + 11 = 62

=> ( n + 1 )2 = 62 - 11

=> ( n + 1 )2 = 25

=> ( n - 1 )2 = 52

=> n - 1 = 5

=> n = 5

Vậy n = 4

Nguyễn Việt Thành
21 tháng 3 2016 lúc 15:19

Hùng ơi! n=5 mà câu kết luận là =4

Nguyễn Đức Anh
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
14 tháng 8 2019 lúc 20:10

Đặt \(n^2+2n+12=x^2\)

\(\Rightarrow x^2-\left(n^2+2n+12\right)=0\)

\(\Rightarrow x^2-\left(n^2+2n+1\right)=11\)

\(\Rightarrow x^2-\left(n+1\right)^2=11\)

\(\Rightarrow\left(x-n-1\right)\left(x+n+1\right)=11=1.11=11.1\)

Dễ thấy \(x+n+1>x-n-1\)nên \(\hept{\begin{cases}x+n+1=11\\x-n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+n=10\\x-n=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\left(10+2\right):2=6\\n=10-6=4\end{cases}}\)

Vậy n = 4

mystic and ma kết
Xem chi tiết
Đỗ Ngọc Anh
Xem chi tiết
Sakura Trần
Xem chi tiết
Hoàng Ngọc Ý Thơ
Xem chi tiết
nguyen tien dung
Xem chi tiết
Lê Song Thanh Nhã
4 tháng 7 2015 lúc 18:51

Đặt n² - n + 13 = k² 
<--> 4n² - 4n + 52 = 4k² 
<--> (4n² - 4n + 1) + 51 = 4k² 
<--> (2n - 1)² + 51 = 4k² 
<--> 4k² - (2n - 1)^2 = 51 
<--> (2k - 2n + 1)(2k + 2n - 1) = 51 
<--> (2k - 2n + 1)(2k + 2n - 1) = 51.1 
Vì 2k - 2n + 1 và 2k + 2n - 1 là những số nguyên nên: 
{2k - 2n + 1 = 51 
{2k + 2n - 1 = 1 
hoặc: 
{2k - 2n + 1 = - 51 
{2k + 2n - 1 = - 1 
Giải các hệ PT trên ta tìm được k và n (cần tìm)

Thủy Phạm Thanh
Xem chi tiết
Thắng Nguyễn
6 tháng 11 2017 lúc 17:44

Để \(n^2+2n+12\) là số chính phương

\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)

\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)

\(\Rightarrow t^2-\left(n+1\right)^2=11\)

\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)

Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)

\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)

Vậy \(n=4\) thì \(n^2+2n+12\) là SCP