Chứng minh rằng phân số \(\frac{246913579}{123456790}\)tối giản.
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\) là tối giản thì phân số \(\frac{a+b}{b}\) cũng tối giản. Suy ra \(\frac{246913579}{123456790}\) là tối giản.
làm sao làm sao, gấp lắm, sắp nộp rùi
Google để chơi à
Lên Google Search tìm xong
Không có mới đăng lên
1.
chứng minh rằng phân số a/a+1 là phân số tối giản (a thuộc Z)
2.
chứng minh rằng phân số 246913579/123456790 là phân số tối giản.
3.
chứng minh rằng phân số 4n+8/2n+3 là phân số tối giản.
trả lời nhanh lên đi tôi nay mình phải đi học rồi
Chứng minh rằng: phân số n/n+1 (n thuộc Z) tối giản
b) CMR: Phân số 246913579 / 123456790 tối giản
c) CMR: các phân số 2m+3 / m+1 ; 4m+8/ 2m+3 là các phân số tối giản với mọi m thuộc Z
Giải chi tiết nha!
CTR: 246913579/123456790 tối giản
Cho phân số \(\frac{m}{n}\)là phân số tối giản chứng minh rằng \(\frac{m+n}{n}\)cũng là phân số tối giản
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
Cho phân số \(\frac{a}{b}\)tối giản. Chứng minh rằng phân số\(\frac{2a+b}{a\left(a+b\right)}\)tối giản
Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.
Ta có:
(a, b) = D = 1
\(\Rightarrow\frac{a}{b}=1\)
\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1
\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)
Bạn bổ sung thêm: \(\frac{2a+b}{1\left(1+b\right)}=\frac{2a+b}{1+b}=\frac{2a}{1}=\frac{2:a}{1:a}=1^{\left(đpcm\right)}\)bổ sung thế này cho nó chắc nhé
Chứng minh rằng nếu phân số \(\frac{a}{b}\)là tối giản thì phân số \(\frac{a+b}{b}\)cũng tối giản.
Gọi d là ƯCLN (a,a+b) và d thuộc N*
=> a+b chia hết cho d ; b chia hết cho d
=> a chia hết cho d ; b chia hết cho d
Mà phân số a/b tối giản =>d = 1
=> ƯCLN(a,a+b)=1
=> Phân số a/a+b tối giản
Ta có
\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)
Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản
Vậy\(\dfrac{a+b}{b}\)là phân số tối giản
cho \(\frac{a}{b}\)là 1 phân số chưa tối giản. Chứng minh rằng phân số sau chưa tối giản:
\(\frac{2a}{a-2b}\)
\(\frac{a}{b}\) là phân số chưa tối giản
\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)
\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản
=> đpcm
\(\text{Vì }\frac{a}{b}\text{ tối giảm ( giả thiết ) nên ta đặt}\hept{\begin{cases}a=md\\b=nd\end{cases}}\left(\text{Với }d=\left(a;b\right);\left(m;n\right)=1\right)\)
\(\text{Nên ta có: }\frac{2a}{a-2b}=\frac{md}{md-2nd}=\frac{md}{d\left(m-2n\right)}\)
\(\text{Vậy phân số }\frac{2a}{a-2b}\text{ chưa tối giảm (vì nó còn có thể chia cho d)}\)