số nghiệm nguyên dương cua hệ pt:xy+xz=43 và xz+yz=23
bạn nào bít giải giùm nha!!!!!!!!!!
số nghiệm nguyên dương[x;y;z]của hệ phương trình
xy+xz=44
xz+yz=23
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai
z(x+y)=23 TH1 z=1 thi x=22,y=1
TH2 z=23 thi vo nghiem
tìm m để hệ phương trình có nghiệm nguyên dương x+y+z=1; xy+yz+xz=9m; xyz=m
Tìm nghiệm nguyên dương của hệ phương trình:
\(\hept{\begin{cases}xy+yz=36\\xz+yz=19\end{cases}}\)
\(\hept{\begin{cases}xy+yz=36\left(1\right)\\xz+yz=19\left(2\right)\end{cases}}\)
Từ ( 2 ) ta được z ( x + y ) = 19 \(\Rightarrow\hept{\begin{cases}z=1\\x+y=19\end{cases}}\)
\(\Rightarrow y=19-x\)
Thế vào PT ( 1 ),ta được : x ( 19 - x ) + 19 - x = 36
\(x^2-18x+17=0\)
\(\Rightarrow\orbr{\begin{cases}x_1=1\\x_2=17\end{cases}}\)
với x1 = 1 thì y1 = 18
với x2 = 17 thì y2 = 2
Giải hệ phương trình:{xy+xz=44 ;xz+yz=23} Giải hộ nhanh nha
tìm nghiệm nguyên dương của phương trình 3(xy+yz+xz)=4xyz
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx
Cho hệ phương trình 1 x y = x z + 1 1 y z = y z + 1 1 z x = z x + 1 . Số nghiệm của hệ phương trình trên là:
A. 1
B. 3
C. 2
D. Vô nghiệm
Điều kiện xyz ≠ 0. Nhận thấy nếu một trong ba số x, y, z có một số âm, chẳng hạn x < 0 thì phương trình thứ 3 vô nghiệm. Nếu hai trong số ba số x, y, z là số âm chẳng hạn x, y < 0 thì phương trình thứ 2 vô nghiệm. Vậy ba số x, y, z cùng dấu
Ta có 1 x y = x z + 1 1 y z = y z + 1 1 z x = z x + 1
⇔ 1 x y z = x z 2 + 1 z 1 x y z = y x 2 + 1 x 1 x y z = z y 2 + 1 y ⇔ 1 x y z = x + z z 2 1 x y z = y + x x 2 1 x y z = z + y y 2
* Trường hợp 1: x, y, z > 0
Nếu x ≥ y chia hai vế của phương trình thứ hai cho hai vế của phương trình thứ ba của hệ ta được x 2 y 2 = x + y y + z ⇒ x ≥ z
Với x ≥ z chia hai vế phương trình chứ nhất cho phương trình thứ hai: z 2 x 2 = x + z y + x ⇒ z ≤ y
Với z ≤ y chia phương trình thứ nhất cho phương trình thứ ba: z 2 y 2 = x + z y + z ⇒ x ≤ y
Suy ra x = y = z thay vào hệ đã cho ta tìm được 1 x 2 = 2 ⇒ x = 1 2 (x > 0) suy ra nghiệm x = y = z = 1 2
* Trường hợp 2: x, y, z < 0 ta làm tương tự tìm được thêm nghiệm x = y = z = − 2 2
Vậy hệ phương trình có 2 nghiệm
Đáp án:C
Tìm 3 số nguyên dương x,y,z để xy+yz+xz=2xyz
xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{9}{xyz}=1\)