1/2*3 + 1/3*4 + 1/4*5 +..........+1/a*(a+1)=49/100
Đặt \(A=\) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{a\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{2}-\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=100\Rightarrow a=100-1\)
\(\Rightarrow a=99\)
Vậy \(a=99\)k cho mik nha :))
tìm số tự nhiên A biết : 1/2*3+1/3*4+1/4*5+...+1/a*(a+1)=49/100
bài này dài lắm nhưng kết quả là 99
mình ngại giải dài lắm !!!
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=99\)
99
dung 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
9
8
7
6
5
4
3
2
1
0
het
Bài 1:Tìm số tự nhiên a , biết :
1/2*3+1/3*4+1/4*5+.......+1/a*{a+1}=49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=100\Rightarrow a=99\)
Tinh
A=1×2×3+2×3×4+3×4×5+...+98×99×100
B=1×3+2×4+3×5+4×6+...+49×51+48×50
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
D = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100
chỉ bt lm phần cuối thôi
D = 1.2.3 + 2.3.4 + ... + 98.99.100
4D = 1.2.3.4 + 2.3.4.4 + ... + 98.99.100.4
4D = 1.2.3.4 + 2.3.4.(5 - 1) + ... + 98.99.100.(101 - 97)
4D = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 98.99.100.101 - 97.98.99.100
4D = 98.99.100
D = 98.99.100 : 4
D = 242550
a, 6A = 1.3.6 + 3.5 .6 + 5.7.6 + ... + 49.51.6
= 1.3.6 + 3.5.(7-1) + 5.7.(9-3) + ... + 49.51.(53-47)
= 18 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 49.51.53 - 47.49.51
= 18 - 1.3.5 + 49.51.53
= 132450
=> A = 132450 : 6 = 22075
b , Giải giống câu a
6B = 2.4.6 + 4.6.6 + 6.8.6 + ... + 98.100.6
= 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 98.100.(102-96)
Đến đây làm giống câu a : Phá ngoặc rồi triệt tiêu đi!
c , 9C= 1.4.9 + 4.7.9 + 7.10.9 + ... + 301.304.9
= 1.4.9 + 4.7.(10 - 1) + 7.10.( 13-4) + ... + 301.304.(307-298)
Đến đây làm giống câu a : Phá ngoặc rồi triệt tiêu đi!
CÒn câu d thì Nguyễn Phương Uyên làm đúng rồi
CHÚ Ý : Cách giải chung:
Nhân biểu thức cần tính với 3 lần khoảng cách giữa các số để xuất hiện các số hạng đối nhau !
Tính giá trị của biểu thức :
A=1/1*2*3+1/2*3*4+...+1/98*99*100
B=1/1*2*3*4+1/2*3*4*5+...+1/27*28*29*30
C=1*3+2*3+3*5+...+97*99+98*100
D=1*2*3+2*3*4+3*4*5+...+48*49*50
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
Tính:
a)1*4*7+4*7*10+7*10*13+....+100*103*106
b)1*4+4*7+7*10+.....+100*103
c)1*1*1+4*4*4+7*7*7+....+99*99*99
d)1*3*3*3+3*5*5*5+5*7*7*7+.....+49*51*51*51
e)1*99+2*98+3*97+......+50*50
f)1*99+3*97+5*95+....+49*51
Giúp mình nhé!
Giúp ik mà . Ngày kia nộp rùi . Đăng 3 lần rùi đó
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
E = 22 + 42 + ... + ( 2n )2
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
= 1 . 51
= 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
= 2 . 100
= 200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
= 1 . 304
= 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
= 1 . 100
= 100
E = 22 + 42 + ... + ( 2n )2
= 22 . ( 2n )2
= 2n4
bn chưa ghi rõ đề bài , theo mik nghĩ bn cần tìm bao nhiều số chứ koo pk tính tổng
A = 1 .51
A = 51
B= 2.100
B= 200
C= 1.304
C= 304
D= 1.100!
D= 100!
E=22 + 42 + .....+ ( 2n) 2
E = 22 . 2n2
E= 2n4
hok tốt !
a,\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+......+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\)
b,A=\(1+5+5^2+5^3+5^4+.....+5^{49}+5^{50}\)
c,A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right).....\left(\dfrac{1}{100^2}-1\right)\)
d,A=\(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
Ai giúp mình thực hiện phép tính này với ạ?? Cảm ơn nhiều!!
a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)
b,
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)
c,
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)
d,
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)
Đặt \(A=B-C\)
\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)
\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)
\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)
Từ (1) và (2) ta có :
\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)