cho a, b thuộc Z, a<0, b>0. So sánh 2 số hữu tỉ (a/b) và (a=2012/b=2012)
Cho a,b thuộc Z,a<0 và b>0
So sánh 2 số hữu tỉ a/b và a+2012/b+2012 ta được a/b ........a+2012/b+2012
cho a,b thuộc Z và a<0 ; b>0
so sánh 2 số hữu tỉ a/b va a+2012/b+2012 ta dc : a/b........a+2012/b+2012
\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)
Vì b > 0 nên b(b + 2012) > 0
a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}
Cho a,b thuộc Z , a< 0, b>0. So sánh hai số hữu tỉ a/b và (a + 2012) / (b + 2012)
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}
Cho a,b thuộc tập hợp số nguyên,a<0,b>0
So sánh hai số hữu tỉ a/b và a+2012/b=2012
Cho a,b thuộc Z ,a<0,b>0. So sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2012}{b+2012}\)
cho a và b là 2 số nguyên(a<0 và b>0)
so sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2012}{b+2012}\)
so sánh hai số hữu tỉ \(\frac{a}{b}va\frac{a+2012}{b+2012}\)
Cho a,b thuộc Z ; a < 0 , b > 0 . So sánh a / b và a + 2012 / b +2012 ( ghi cách làm )
cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh 2 số hữu tỉ a/b và a+n/b+n
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n