chứng minh rằng 3n+3+3n+1+2n+3+2n+2chia hết cho 6
các bạn giải nhanh giùm mình nha
CMR:3n+3+3n+1+2n+3+2n+2chia hết cho 6
\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)
\(=6\left(5.3^n+2.2^n\right)⋮6\)
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(9+3\right)+2^{n+2}\left(8+4\right)\)
\(=12.3^{n+1}+12.2^{n+2}=12.\left(3^{n+1}+2^{n+2}\right)\)
mà 12⋮6
\(\Rightarrow12.\left(3^{n+1}+2^{n+2}\right)⋮6\Rightarrow dpcm\)
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
chứng minh rằng với mọi STN n khác 0 thì só M=n^3+3n^2+2n chia hết cho 6! (bạn nào giỏi giải giúp mình nha,please)
ta có: M=n^3+3n^2+2n=2n(n+1)+n^2(n+1)=n(n+1)(n+2)
ta thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp
=>tồn tại 1 số chia hết cho 2(vì n(n+1) là tích 2 số nguyên liên tiếp) (với n thuộc Z)
tồn tại 1 số chia hết cho 3( vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
=>n(n+1)(n+2) chia hết cho 2.3(vì (2;3)=1)
=>n(n+1)(n+2) chia hết cho 6
=>n^3+3n^2+2n chia hết cho 6
có chỗ nào ko hiểu thì hỏi mk nhé
Tìm STN n biết :
a, 3+ 2n chia hết cho n
b, 3n+2 chia hết cho n- 1
c, 3n+2chia hết cho 2n+3
giúp với nha!
Tìm n thuộc z biết a)2n+17chia hết n-3
b) 3n+41chia hết 2n+1
Giải chi tiết giùm mình nha càng nhanh càng tốt
a)2n+17/n-3
=>(2n-6)+23/n-3
=>2(n-3)+23/n-3
=>2+23/n-3
=>23/n-3
=>(n-3)=Ư(23)={1;-1;23;-23}
n-3=1=>n=4
n-3=-1=>n=2
n-3=23=>n=26
n-3=-23=>n=-20
Còn câu B thì bạn tự làm nhé!
Các bạn ơi cứu mình làm bài này nhé
3n-2chia hết cho 2n+1
\(3n-2⋮2n+1\)
\(\Leftrightarrow2.\left(3n-2\right)⋮2n+1\)
\(\Leftrightarrow6n-4⋮2n+1\)
\(\Leftrightarrow3\left(2n+1\right)-7⋮2n+1\)
Mà \(3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Làm nốt
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Tìm n thuộc N sao cho:
3n chia hết cho 5-2n
2n+1 chia hết cho 6-n
4n+3 chia hết cho 5-2n
giải cả cách làm giùm mình nữa nhé
ai dúng+ nhanh mình tick cho
Bạn nào giúp mk bài này với: cho số tụ nhiên n biết 2n+1 và 3n+1 là 2 số chính phương. Chứng minh n chia hết cho 40 (Giải nhanh giùm mk nhé, cần gấp lắm ạ).
a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì => x^2 =1 (mod 8)
x^2 =-1(mod 5) hoặc x^2=0(mod 5)
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;