Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Duy Anh
Xem chi tiết
Lương Thị Thanh Hương
Xem chi tiết
le thi ngoc anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2022 lúc 14:22

a: Xét ΔABH và ΔACH có

AB=AC

góc BAH=góc CAH

AH chung

Do đó: ΔABH=ΔACH

b: ΔBAC cân tại A

mà AH là phân giác

nên AH vuông góc với BC

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE
Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Đinh Kim Yến
Xem chi tiết
chang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:49

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔACE vuông tại A có AF là đường cao ứng với cạnh huyền CE, ta được:

\(CF\cdot CE=CA^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AD là đường cao ứng với cạnh huyền BC, ta được:

\(CD\cdot CB=CA^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CF\cdot CE=CD\cdot CB\)

chi nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2022 lúc 11:23

\(\overrightarrow{AB}\cdot\overrightarrow{CB}=4\)

=>AB*CB*cosB=4

=>AB*CB*AB/BC=4

=>BA^2=4

=>AB=2

\(\overrightarrow{AC}\cdot\overrightarrow{BC}=9\)

=>AC*BC*cosC=9

=>AC*BC*AC/BC=9

=>AC=3

=>\(BC=\sqrt{13}\)

phung hong nhung
Xem chi tiết
Yêu Toán
9 tháng 4 2016 lúc 20:41

a. Áp dụng định lí Pitago vào tam giác vuông ABC ta có: AB2 +AC2 = BC2 --> 92 +122 =BC2 -->BC2 = 225 -->BC =15 

b. Xét tam giác ABD và tam giác MBD có :

góc BAD = góc BMD = 90 độ

cạnh BD chung

góc ABD = góc MBD ( BD là phân giác ABM )

--> tam giác ABD = MBD ( cạnh huyền góc nhọn )

c. Xét tam giác BEC có : AC vuông góc BE

                                     ME vuông góc BC

                                     AC cắt ME tại D

-----> D là trực tâm --> BD vuông góc CE hay BD là đường cao

Tam giác BEC có BD vừa là phân giác vừa là đường cao --> tam giác BEC cân

nguyen thi ngoc anh
Xem chi tiết
Nguyễn Phương Uyên
30 tháng 1 2019 lúc 21:17

tu ve hinh : 

a, AC = AB => tamgiac ABC can tai A (dn)

=> goc ABC  = goc ACB (tc) 

xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)

=>  tam giac ABH = tamgiac ACH (ch - gn)            (1)

b, tamgiac AHB vuong tai H do AH | BC (gt)

=> AB2 = AH2 + BH2 

 (1) =>  BH  = HC ma BC = 6 (gt)=> BH = 3

BA = 5 (gt)

=> AH = 52 - 32

=> AH = 16

=> AH = 4 do AH  > 0

c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)

goc ABC = goc ACB (cmt) va BH = HC (cmt)

=>  tamgiac BMH = tamgiac NCH (ch - gn) 

=> MH = HN (dn)

=> tamgiac MNH can tai H (dn)

d, cm theo truong hop ch - gn di, moi tay qa

Kiệt Nguyễn
1 tháng 2 2019 lúc 8:49

                       Giải

( Bạn tự vẽ hình nhé )

a, \(AB=AC\)  \(\Rightarrow\)\(\Delta ABC\)  cân tại A 

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) 

Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\)  do \(AH\perp BC\)

\(\Delta ABH=\Delta ACH\)              (1) [ đpcm]

b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)

 \(\Rightarrow AB^2=AH^2+BH^2\)

Từ  (1) suy ra  BH  = HC mà BC = 6 nên BH = 3

\(\Rightarrow\)BA = 5 

\(\Rightarrow AH^2=5^2-3^2\)

\(\Rightarrow AH^2=25-9\)

\(\Rightarrow AH^2=16\)

\(\Rightarrow AH=\sqrt{16}\)

\(\Rightarrow AH=4cm\)

\(\Rightarrow\) AH = 4cm do AH  > 0

c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)

 \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)

\(\Rightarrow\Delta BHM=\Delta NCH\)  

\(\Rightarrow MH=HN\)

\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)

d, ...

Nhoc Nhi Nho
Xem chi tiết