Tìm n biết 16n+7n chia hết cho n+1
Tìm các số tự nhiên n, biết:
a) 7n chia hết cho n+4
b) n^2+2n+6 chia hết cho n+4
c) n^2+n+1 chia hết cho n+1
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
n^2 + n + 1 chia hết cho n + 1
=> n(n+1)+1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n+1 thuộc Ư(1)={1;-1}
=> n thuộc { -2;0 }
tìm n thuộc N, biết:
a) 6 chia hết cho 5n+1
b) n bình+7n+9 chia hết cho n+7
Tìm n thuộc N, biết:
a) n^2+3 chia hết cho n-1
b) 2n+1 chia hết cho 7n-2
Tìm số nguyên n, biết
a,-22 chia hết cho n
b,-16 chia hết cho (n - 1)
c,7n chia hết cho 3
d,n + 19 chia hết cho 18
Tìm n
6n + 5 chia hết cho 11
3n + 7 chia hết cho 13
16n + 3 chia hết cho 1
Tìm n biết
7n - 1 chia hết cho 4
\(7n-1⋮4\)
\(\Rightarrow21n-3⋮4\)
\(\Rightarrow20n+\left(n-3\right)⋮4\)
\(\Rightarrow n-3⋮4\)
\(\Rightarrow n=4k+3\)
\(\)
các bạn giải giúp mik với ạ mik đang cần gấp
Tìm n thuộc Z biết:
a) -7n + 3 chia hết cho n -1
b) 4n + 5 chia hết cho 4-n
c) 3n+4 chia hết cho 2n +1
d) 4n + 7 chia hết cho 3n + 1
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
1: Tìm x,y biết:
a: ( x + 2 ) . ( y - 3 ) = x + 9
b: y . ( x - 6 ) = x - 1
2:Tìm n , biết:
a: ( 7n + 7 ) + 11 chia hết cho n + 1
b: n + 2 chia hết cho n - 11
c: 2n + 13 chia hết cho n + 2
tìm n biết 32 - 7n chia hết cho n