xé tổng T=2/2^1+3/2^2+4/2^3+...+2015/2^2014. Hãy so sánh Tvới 3
Xét tổng T= \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\).Hãy so sánh T với 3
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)
Mà \(\frac{1}{2^{2014}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)
Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\) ( đpcm )
Vậy \(T< 3\)
Bạn xem đúng không nhé, chúc bạn học tốt ~
Ta có : T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 2 1 T = 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 T − 2 1 T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 2 1 T = 1 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 − 2 3 3 − 2 4 4 − ... − 2 2015 2015 2 1 T = 1 + 2 2 3 − 2 2 2 + 2 3 4 − 2 3 3 + ... + 2 2014 2015 − 2 2014 2014 − 2 2015 2015 2 1 T = 1 + 2 2 1 + 2 3 1 + ... + 2 2014 1 − 2 2015 2015 Đặt A = 2 2 1 + 2 3 1 + ... + 2 2014 1 2A = 2 1 + 2 2 1 + ... + 2 2013 1 2A − A = 2 1 + 2 2 1 + ... + 2 2013 1 − 2 2 1 + 2 3 1 + ... + 2 2014 1 A = 2 1 − 2 2014 1 Mà 2 2014 1 > 0 ⇒A = 2 1 − 2 2014 1 < 2 1 ⇔1 + A − 2 2015 2015 < 1 + 2 1 − 2 2014 1 − 2 2015 2015 ⇔ 2 1 T < 2 3 − 2 2014 1 + 2 2015 2015 Mà 2 2014 1 + 2 2015 2015 > 0 ⇒ 2 1 T < 2 3 ⇒ 2 1 T.2 < 2 3 .2 ⇒T < 3 ( đpcm ) Vậy T < 3 Bạn xem đúng không nhé, chúc bạn học tốt ~
xét T=2/2+3/22+4/23+...+2015/22014. Hãy so sánh T với 3
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2
cho A = 1+2+2^3+2^4+...+2^2014+2^2015 và B=2^2015 hãy so sánh A và B
\(A=1+2+2^2+...+2^{2015}>2^{2015}=B\)
\(\Rightarrow A>B\)
P.s: đề sai đúng ko bạn :v
Cho \(M=\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\). Hãy so sánh M với \(\frac{1}{2}\)
So sánh A và B :\(B=1+2+3+4+....+2014+2015\)\(A=1^2-2^2+3^2-4^2+5^2-6^2+...-2014^2+2015^2\)
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)
Bài 1:cho hàm số f(x) xác định với mọi x thuộc R .Biết rằng với mọi x khác 0 ta đều có
\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\) .Tính f(2)
Bài 2:Tính tổng T=\(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\).Hãy so sánh T với 3
Cho \(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\). So sánh T với 3
Giúp mk zới :3
bạn tham khảo tạm ở đây nhé
https://olm.vn/hoi-dap/question/994432.html
^^
bạn tham khảo tại đây nhé
http://olm.vn/hoi-dap/question/994432.html
^-^
cho tổng T= \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}\) +...+\(\dfrac{2016}{2^{2015}}+\dfrac{2017}{2^{2016}}\)
so sánh T với 3
uk, cái bạn tên Phong Thần công nhận giỏi thật nha