\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{99}+\frac{1}{100}\)so sánh với 1
Cho \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\)SO SÁNH A VỚI 1
so sánh
\(\frac{100}{10^{11}}+\frac{100}{10^{12}}va\frac{99}{10^{11}}+\frac{101}{10^{12}}\)
\(\frac{10^{10}+1}{10^{11}+1}va\frac{10^{11}+1}{10^{12}+1}\)
s2 Lắc Lư s2 cko hỏi ôg lp mấy z?
CHO \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\)
SO SÁNH A VỚI 1 GIÚP MÌNH GIẢI ĐẦY ĐỦ NHÉ ! THANKS
A= 1/10+1/11+1/12+1/13+...........+1/99+1/100
2A=1/9+1/10+1/11+1/12+...........+1/98+1/99
2A-A=(1/10+1/11+1/12+1/13+.............+1/99+1/100)-(1/9+1/10+1/11+1/12+............1/98+1/99)
A=1/100-1/9
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)
So sánh A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)với 1
Hãy so sánh:\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\) với 1.
Các bạn giúp mik với, mik đang cần gấp.Mik cảm ơn nhé.Mik sẽ tick cho bạn nào trả lời đúng nhất, nhanh nhất và chi tiết nhất nhé!!!
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
Cho A =\(\frac{1}{10}\)+ \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)Hãy so sánh A với \(\frac{1}{2}\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)
\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)
\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)
\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)
\(A< \frac{1}{2}\)
Bài 1; So sánh 2 số A và B ,biết rằng
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49..50}\)
\(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Bài 2 : Cho \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Biết rằng \(a+b+c=7\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)
Hãy so sánh \(S\)và \(1\frac{8}{11}\)
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
Bài 2:
ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow S=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
thay số: \(S=7.\frac{7}{10}-3\)
\(S=4\frac{9}{10}-3\)
\(S=1\frac{9}{10}=\frac{19}{10}\)
mà \(1\frac{8}{11}=\frac{19}{11}\)
\(\Rightarrow\frac{19}{10}>\frac{19}{11}\)
\(\Rightarrow S>\frac{19}{11}\)
\(\Rightarrow S>1\frac{8}{11}\)
\(\frac{99^1}{1}+\frac{99^2}{1}+\frac{99^3}{1}+...+\frac{99^{100}}{1}\)so sánh với 1001 vạn