Cho 11 số tự nhiên. Chứng minh rằng luôn chọn được 2 số có chữ số tận cùng giống nhau.
chứng minh rằng trong 11 số tự nhiên liên tiếp luôn có 2 số có chữ số tận cùng giống nhau
Có tất cả 10 chữ số tận cùng là 0,1,2,3,4,5,6,7,8,9
Mà có 11 số nên theo nguyên lý Đirichlê có 2 số có tận cùng giống nhau.
Chứng minh : Trong 11 số tự nhiên bất kì luôn tìm được hai số có chữ số tận cùng giống nhau ?
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy .....
Cho 11 số tự nhiên bất kì . Chứng minh rằng trong đó chắc chắn phải có 2 số có chữ số tận cùng giống nhau
Các số tự nhiên đều có chữ số tận cùng là : 0; 1; 2 ; 3; 4; 5; 6; 7; 8; 9.
Trong trường hợp xấu nhất, 10 số đầu tiên đều có các chữ số tận cùng khác nhau. Khi đó số cuối cùng sẽ phải có chữ số tận cùng giống với 10 số còn lại.
Vậy chắc chắn rằng phải có 2 số có chữ số tận cùng giống nhau.
Chứng minh rằng:
a) n và n5 có chữ số tận cùng giống nhau với n là số tự nhiên.
b) n2 luôn luôn chia cho 3 dư 1 với n không chia hết cho 3 và n là số tự nhiên.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Chứng minh rằng trong 11 số tự nhiên bất kỳ bao giờ cũng có ít nhất 2 số có chữ số tận cùng giống nhau
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy trong 11 STN...
Có thể mình trình bày chưa chính xác lắm, bạn có thể sửa lại cách trình bày. ^ - ^
các số có thể tận cùng là từ 0 đến 9
có tất cả 10 số tận cùng mà có 11 số bất kì
suy ra trong 11 số bất kì tồn tại ít nhất hai số có tận cùng giống nhau.
Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0; 1; 2; 3; 4; 5; 6; 7; 8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
Vậy .....
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
trả lời giups mình với mình tích cho , thiệt
Trời ơi đếm cũng biết mà 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21
vì nó có 11 số theo sự lặp đi lặp lại như 1 =>11 , 11=>21...
hãy chứng tỏ rằng trong 11 số tự nhiên bất kỳ bao giờ cũng có ít nhất 2 số có chữ số tận cùng giống nhau
c/s tận cùng có thể : 0,1,2,...,9 ( có 10 số )
Do 11 : 10 = 1 ( dư 1 )
Áp dụng nguyên lí Đi-rich-lê có ít nhất 2 số có tận cùng giống nhau
:Ta có:
11:10=1 dư 1
⇒ Chữ số tận cùng có thể có là: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; (có 10 số)
⇒ Có ít nhất 2 số có chữ số tận cùng giống nhau
Chứng minh rằng trong 101 số tự nhiên bất kỳ có thể tìm đc 2 số có 2 chữ số tận cùng giống nhau
Nguyên lý Direchlet này tớ thấy khó hiểu lắm