Tính nhanh
A=6+16+30+48+...+19600+19998
B=2+5+9+14+...+4949+5049
C=1.2.3+2.3.4+3.4.5+...+98.99.100
A= 6+16+30+48+...+19600+19998
B=2+5+9+14+...+4949+5049
mấy bạn trình bầy chi tiết hộ mình nhé, mình mới học
chưng tỏ 1/1.2.3 +1/2.3.4 + 1/3.4.5+...+1/98.99.100=4949/19800
Bạn cho sai đề rồi !
Sửa : Chứng tỏ : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{9900}\)
Ta có : \(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{99.100-2}{2.99.100}\)
\(=\frac{4949}{9900}=VP\)
Study well ! >_<
chứng tỏ
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 = 4949/19800
= 1/2.(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + 1/4.5 - ........+1/98.99 - 1/99.100 )
=1/2.(1/1.2 - 1/99.100)
=1/2 . 4949/9900
=4949/19800
Tính :
A = 4 + 12 + 24 + 40 + .......+ 19404 + 19800
B = 1 + 3 + 6 + 10 + .......... + 4851 +4950
C = 6 + 16 + 30 + 48 + ........... + 19600 + 19998
D = 2 + 5 + 9 + 14 + ............+ 4949 + 5044
CHỨNG TỎ: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\)
Lưu ý: ko pk toán lớp1
\(\frac{2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\right)}{2}\)
(\(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\)) : 2
(\(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)) : 2
mình làm tiếp nha lúc nãy lỡ tay
\(\frac{\left(\frac{1}{2}-\frac{1}{9900}\right)}{2}=\frac{4949}{19800}=VP\)
Vậy ....
a) b=1/3+1/15+1/35+...+1/97.99
b) c=2/1.2.3+2/2.3.4+2/3.4.5+...+2/98.99.100
c) d=5/2.3.4+5/3.4.5+...+5/98.99.100+5/99.100.101
GIẢI GIÚP MÌNH THEO CÁCH HỌC CỦA LỚP 6 VỚI Ạ. CẢM ƠN MỌI NGƯỜI NHIỀU!
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
F=1.3+2.4+3.5+...+2013.2015
J=6+16+30+...+19600+19998
K=2+5+9+14+...+4949+5049
Tính Tổng Của Từng Kết Qủa
tính 1.2.3+2.3.4+3.4.5+....+98.99.100
Đặt S=1.2.3+2.3.4+...+98.99.100
=>4S=1.2.3.4+2.3.4.4+...+98.99.100.4
=>3S=1.2.3(4-0)+2.3.4(5-1)+....+98.99.100(101-97)
=>4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+....+98.99.100.101-97.98.99.100
=>4S=98.99.100.101
=>S=24497550
a)Tìm các số nguyên x,y sao cho \(3xy+x-3y=6\)
b) CMR : \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}=\dfrac{4949}{19800}\)
a) Ta có: \(3xy+x-3y=6\)
\(\Rightarrow x\left(3y+1\right)-3y=6\)
\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)
Ta có bảng sau:
....
b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)
Vậy...