Cho tam giác ABC, BE là phân giác góc B, CF là phân giác góc C. BE giao CF tại O. Biết BO/BE × CO/CF = 1/2. Chứng minh rằng tam giác ABC vuông tại A.
cho tam giác ABC có các đường phân giác BE, CF cắt nhau tại O và \(\frac{BO}{BE}.\frac{CO}{CF}=\frac{1}{2}\). chứng minh rằng tam giác ABC vuông tạiA
Khai bút thoi nào,hy vọng năm mới nhiều may mắn :)
Ký hiệu như hình vẽ nhá :)
Áp dụng định lý đường phân giác ta có:
\(\frac{CE}{CA}=\frac{BC}{AB}=\frac{a}{c}\Rightarrow\frac{CE}{CA+CE}=\frac{a}{a+c}\Rightarrow\frac{CE}{b}=\frac{a}{a+c}\Rightarrow CE=\frac{ab}{a+c}\)
Áp dụng định lý đường phân giác lần nữa:
\(\frac{BO}{OE}=\frac{BC}{CE}=a\cdot\frac{a+c}{ab}=\frac{a+c}{b}\Rightarrow\frac{BO}{OE+OB}=\frac{a+c}{a+b+c}=\frac{BO}{BE}\)
Chứng minh tương tự:\(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)
Mà \(\frac{BO}{BE}\cdot\frac{CO}{CF}=\frac{1}{2}\) nên \(\frac{a+c}{a+b+c}\cdot\frac{a+b}{a+b+c}=\frac{1}{2}\Rightarrow\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)
\(\Rightarrow2a^2+2ab+2ac+2cb=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow a^2=b^2+c^2\)
=> đpcm
zZz Cool Kid_new zZz olm giờ nát vậy sao em :(
Cho tam giác ABC cân tại A kẻ BE là phân giác của góc B và CF là phân giác góc C (E thuộc AC, F thuộc AC)
a)chứng minh AE = CF
b)chứng minh EF//BC
c)Gọi I là giao điểm của BE và CF chúng minh AI thuộc BC
d) tam giác BIC là tam giác gì?
a: Xét ΔAEB và ΔAFC có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Xét ΔFBI và ΔECI có
\(\widehat{FBI}=\widehat{ECI}\)
FB=EC
\(\widehat{BFI}=\widehat{CEI}\)
Do đó: ΔFBI=ΔECI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI\(\perp\)BC
d: Xét ΔBIC có IB=IC
nên ΔBIC cân tại I
Cho tam giác ABC có AB = AC, BE vuông góc với AC, CF vuông góc với AB, BE cắt CF tại O. Chứng minh :
a, BE=CF
b, AO là tia phân giác của góc BAC
c, AO vuông góc BC
Bạn ơi mik ko làm được nữa mik viết giàn ý đc ko
Giàn ý:
a) C/M 2 tam giác trên bằng nhau theo trương hợp cạnh huyền góc nhọn
=>BE =EF( vì là 2 cạnh t/ư)
b) C/M AE=AF( theo phương pháp cộng đoạn thẳng)
C/M 2 tam giác AOF = AOE ( cạnh huyền cạnh góc vuông)
=> 2 góc FAO = OAE (vì là 2 góc t/ư )
Mà tia AO nằm trong góc FAE nên Ao là tia pg của góc FAE
c) Gọi điểm ở giữa B và C là K
C/M 2 tam giác AKB = AKC (c.g.c)
=>góc AKB = góc AKC( vì.....)
Mà 2 góc đó cộng vs nhau bằng 180 độ( kb)
=> 1 trong 2 góc bằng 90 độ
=> AK ( hoặc AO) vuông góc vs BC
có gì sai sót mong bạn thông cảm
nếu đúng mik nha
Cho tam giác ABC cân tại A (góc A nhọn). kẻ BE vuông AC, CF vuông AB (E thuộc AC, F thuộc AB).
a, Chứng minh tam giác ABC = tam giác ACF.
b, gọi M là giao điểm của BE và CF, chứng minh AM là tia phân giác góc BAC
Giúp em với ạ em đg cần gấp. Cảm mơn mn trc
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC
Cho tam giác AMN có AM = AN, trên cạnh MN lấy B và C sao cho BM = CN < MN/2.
a) Chứng minh rằng Tam giác ABM = Tam giác ACN và Tam giác ABC là tam giác cân.
b) Kẻ BE vuông góc AM (E thuộc AM) và CF vuông góc AN (F thuộc AN). Chứng minh rằng BE = CF
c) Gọi giao điểm của BE và CF là O. Chứng minh rằng AO là tia phân giác của góc BAC.
#Giúp mình nha các bạn,mình cần gấp :(
Cho tam giác AMN có AM = AN, trên cạnh MN lấy B và C sao cho BM = CN < MN/2.
a) Chứng minh rằng Tam giác ABM = Tam giác ACN và Tam giác ABC là tam giác cân.
b) Kẻ BE vuông góc AM (E thuộc AM) và CF vuông góc AN (F thuộc AN). Chứng minh rằng BE = CF
c) Gọi giao điểm của BE và CF là O. Chứng minh rằng AO là tia phân giác của góc BAC.
Các bạn cố giúp mình nha !!!!!
mk bt , cơ mà lười lắm , sorry .
cho bn giợi ý nhé .
- hãy đổi tầm nhìn của bn để thấy điều đặc biệt và cách để làm bài
Tam giác ABC có các đường phân giác BE, CF cắt nhau tại O và\(\frac{BO}{BE}.\frac{CO}{CF}=\frac{1}{2}\)
Chứng minh: Tam giác ABC vuông tại A.
Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"
Xét tg BCE có
\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\)
Xét tg BCF có
\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)
\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)
\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)
\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)
Xét tg ABC cũng áp dụng định lý đường phân giác có
\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\) (1)
\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)
Thay (1) và (2) vào (*) ta có
\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)
\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)
=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC
=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2
=> tam giác ABC vuông tại A (định lí pitago đảo)
Cho tam giác ABC cân tại A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, chứng minh BE=CF và góc ABE = góc ACF
b, gọi I là giao điểm của BE và CF , chứng minh rằng IE=IF
c, chứng minh AI là tia phân giác của góc A
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
Cho tam giác ABC cân tại A, BE và CF là 2 đường trung tuyến của tam giác ABC, BE cắt CF tại O
a, Chứng minh: BE =CF
b, Chứng minh: AO vuông góc với BC
c, Biết AB=13cm;BC=10cm. Tính OB
a/ Giải thích thêm: Vì AB = AC (tam giác ABC cân tại A. Mà E là trung điểm AC;F là trung điểm AB => AF = BF = AE = EC)
Xét tam giác BAE và tam giác CAF có:
\(\hept{\begin{cases}\widehat{BAC}:chung\\AB=AC\left(gt\right)\\AE=AF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta BAE=\Delta CAF\left(c.g.c\right)\)
\(\Rightarrow BE=CF\)
b/ Xét tam giác ABC có 2 đường trung tuyến BE;CF cắt nhau tại O
=> O là trọng tâm tam giác ABC
=> AO là đường trung tuyến thứ 3
=> AO đi qua trung điểm H của BC (Bạn bổ sung điểm H cho mình nhá - Cho dễ làm thôi)
Mà tam giác ABC cân tại A => AO vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AO⊥BC\)tại H
c/ Vì H là trung điểm BC => HB = HC = BC:2 = 10 : 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
\(AH^2+BH^2=AB^2\left(pytago\right)\)
\(AH^2+5^2=13^2\)
\(\Rightarrow AH^2=13^2-5^2=169-25=144\)
\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)
Vì O là trọng tâm của tam giác ABC => \(OH=\frac{1}{3}AH\Rightarrow OH=\frac{1}{3}.12=4\left(cm\right)\)
Xét tam giác BOH vuông tại H có:
\(BH^2+OH^2=BO^2\left(pytago\right)\)
\(5^2+4^2=BO^2\)
\(25+16=BO^2\)
\(41=BO^2\)
\(\Rightarrow BO=\sqrt{41}\approx6,4\left(cm\right)\)