Một mảnh vườn hình tam giác có độ dài 3 cạnh lần lượt là 4m,5m,6m. Các đường cao tương ứng là HA,HB,HC. Tính diện tích mảnh vườn đó biết HA-HB+HC=26
AI biết giải dùm với. thahks trước
Một mảnh vườn hình tam giác có độ dài 3 cạnh lần lượt là: 4m,5m và 6m. Các đường cao tương ứng là: HA,HB,HC. Tính diện tích mảnh vườn đó biết HA-HB+HC=26
Theo bài ra ta có:
\(3h_a=4h_b=6h_c\left(Sabc\right)\)
\(\Rightarrow Sabc=2h_a=\frac{5}{2}h_b=3h_c\)\(=\frac{h_a}{\frac{1}{2}}=\frac{h_b}{\frac{2}{5}}=\frac{h_c}{\frac{1}{3}}=\frac{h_a-h_b-h_c}{\frac{1}{2}-\frac{2}{5}-\frac{1}{3}}=\frac{26}{\frac{1}{2}}=26.2=52\left(m\right)\)
Vậy diện tích mảnh vườn là 52m
Một mảnh đất hình tam giác có độ dài 3 cạnh lần lượt là 3(m); 4(m); 6(m) và đường cao tương ứng là ha (m); hb (m); hc (m).
Tính diện tích mảnh đất biết: ha – hb + hc = 25 (m).
Gọi diện tích miếng đất là \(S\left(m^2\right)\)
Khi đó \(h_a=\frac{2S}{3},h_b=\frac{2S}{4},h_c=\frac{2S}{6}\)
\(h_a-h_b+h_c=25\)
\(\Rightarrow\frac{2S}{3}-\frac{2S}{4}+\frac{2S}{6}=25\)
\(\Leftrightarrow S=25\div\left(\frac{2}{3}-\frac{2}{4}+\frac{2}{6}\right)=50\left(m^2\right)\)
Một mảnh đất hình tam giác có độ dài 3 cạnh lần lượt là :3(m);4(m);6(m) có đường cao tương ứng là: ha;hb;hc. Tính diện tích mảnh đất biết:\(h_a;h_b;h_c\)
Tính diện tích mảnh đất biết:
\(h_a-h_b+h_c=25\)
Cho tam giác có 3 cạnh là a,b,c. Các đường cao tương ứng là ha, hb, hc. Biết ha+hb, hb+hc, hc+ha tỉ lệ với 5,6,7. Tính a,b,c biết a+b+c = 62cm
TAM GIÁC ABC CÓ 3 CẠNH LÀ A, B, C VÀ 3 ĐƯỜNG CAO TƯƠNG ỨNG LÀ Ha,Hb,Hc
(Ha+Hb):(Hb+Hc):(Hc+Ha)=5:7:8
HỎI A,B,C LẦN LƯỢT TỈ LỆ VỚI 3 SỐ NÀO??
cho a, b,c là độ dài ba cạnh của một tam giác. CMR (a^2+b^2+c^^2)(ha^2+hb^2+hc^2) >=36 với ha, hb, hc là 3 đường cao tương ứng
Cho tam giác ABC có dộ dài ba cạnh là BC,AC,AB lần lượt là a,b,c.
Các đường cao tương ứng là ha,hb,hc. tam giác đó là tam giác gì khi biểu thức \(\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\)đạt gtnn
Cho tam giác ABC với BC = a, CA = b, AB = c và ba đường cao ứng với ba cạnh lần lượt có độ dài ha,hb,hc Gọi r là khoảng cách từ giao điểm của ba đường phân giác của tam giác đến một cạnh của tam giác. Chứng minh 1/ha+1/hb+1/hc=1/r