1.CMR:
a) Cho a, b, c là các số nguyên dương
\(1<\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2\)
b) \(S3=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Gỉa sử a,b là các số nguyên dương, b là số nguyên tố. Sao cho: a^2+b^2=c^2.
CMR:a<b
Với mỗi số nguyên dương k, kí hiệu k!= 1.2.3.....k. Cho số nguyên n>3. CMR:A=1!+2!+...+n! không thể biểu diễn dưới dạng a^b, với a,b là các số nguyên,b>1
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
a,b,c,d là các số nguyên dương thỏa mãn \(\frac{a^3+b^3}{c^3+d^3}=\frac{1}{5}\)
cmr:a+b+c+d là hợp số
nhân chéo. thêm bớt => chia hết cho ...
hình như có chtt
a,b,c,d là các số nguyên dương thỏa mãn \(\frac{a^3+b^3}{c^3+d^3}=\frac{1}{5}\)
cmr:a+b+c+d là hợp số
cho a,b,c,d là các số nguyên dương thỏa mãn :\(a^2+c^2=b^2+d^2\)CMR:a+b+c+d là hợp số
\(a^2+c^2+2ac+2bd=b^2+d^2+2ac+2bd\)
\(\left(a+c\right)^2-\left(b+d\right)^2=2\left(ac-bd\right)\)
\(\left(a+c+b+d\right)\left(a+c-b-d\right)=2\left(ac-bd\right)\)
Nếu ac =bd => a+c =b+d => a+c+b+d = 2(a +c) => là hợp số
Nếu ac -bd khác 0 => ?????????????????
cho a,b,c,d là các số nguyên dương thỏa mãn :\(a^2+b^2=b^2+d^2.CMR:a+b+c+d\)là hợp số
CMR:
a) a3+b3+c3⋮9 thì abc⋮9 (a, b, c nguyên)
b) CM trong 5 số nguyên dương đôi 1 phân biệt luôn tồn tại 4 số có tổng là hợp số
Cho a,b là các số nguyên dương. CMR:a/b+b/a >hoặc=2
Dấu / này là dấu phân số
Áp dụng bđt cosi ta có :
a/b + b/a >= \(2\sqrt{\frac{a}{b}.\frac{b}{a}}\)= 2
Dấu "=" xảy ra <=> a=b > 0
=> ĐPCM
Tk mk nha
cho a;b;c là các số nguyên thỏa mãn a+b+c=2016 CMR:a2+b2+c2là 1 số chẵn
cho a,b,c,d,e,f là số nguyên dương thỏa mãn :abc=def.
CMR:a.(a^2+b^2)+d.(e^2.f^2) là hợp số