Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Noo
Xem chi tiết
Hoàng Noo
20 tháng 2 2016 lúc 9:04

Các bạn giải thích giùm tớ luôn nhé

Hoàng Nhất Vũ
10 tháng 3 2016 lúc 18:39

(a+b)(1/a+1/b)=1+a/b+b/a+1

                    =2+(a^2+b^2)/(a*b)

vì a^2+b^2>0; a*b>0

=>Qmin=2

Phượng Hoàng Lửa
Xem chi tiết
Lê Mai Hiền Lương
11 tháng 3 2016 lúc 8:36

gtnn=4 dok pn k nka. đảm bảo đúg lun mjk vừa làm xog

Nguyễn Văn Vinh
13 tháng 3 2016 lúc 19:56

Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4 

danh Vô
Xem chi tiết
Phùng Minh Quân
9 tháng 12 2018 lúc 10:30

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)

\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)

pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 ) 

pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)

pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) ) 

Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)

Chúc bạn học tốt ~ 

KuDo Shinichi
Xem chi tiết
Võ Ngọc Hoài An
10 tháng 3 2016 lúc 20:36

kết quả chắc chắn 100 phần trăm là =1 đó

Phước Nguyễn
10 tháng 3 2016 lúc 20:39

Giá trị nhỏ nhất của biểu thức  \(A_{min}=4\)

Cua Lê
Xem chi tiết
Nguyễn Nhật Minh
20 tháng 2 2016 lúc 19:12

\(Q=2+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=4\)

Q min = 4 khi a =b

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 16:07

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

OoO Kún Chảnh OoO
Xem chi tiết
Hiếu
Xem chi tiết
Nguyễn Thái Thùy Linh
Xem chi tiết
IS
1 tháng 8 2020 lúc 18:28

a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng

b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)

c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)

do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)

\(=>\frac{1}{P}\ge-\frac{1}{3}\)

dấu = xảy ra khi x=0

zậy ..

Khách vãng lai đã xóa
Nguyễn Thái Thùy Linh
1 tháng 8 2020 lúc 18:36

came ơn bạn nha!!!

Khách vãng lai đã xóa