Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn tiến hanh
Xem chi tiết
Thanh Tùng DZ
28 tháng 4 2017 lúc 17:57

Ta có :

\(B=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)

\(B=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)

\(B=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)

\(B=97+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)

gọi A là biểu thức trong ngoặc

Lại có : 

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\)

\(\Leftrightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

\(2A=1-\frac{1}{3^{98}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)

\(\Rightarrow A< 1\)

\(\Rightarrow B< 97+1=98< 100\)

vậy \(B< 100\)

Nguyenduc Thang
Xem chi tiết
Cô bé không cô đơn
19 tháng 4 2017 lúc 16:09

bạn ơi đề bài có sai ko zậylolang

Nguyenduc Thang
Xem chi tiết
hoàng thu phương
Xem chi tiết
ewsrdtfyg
Xem chi tiết
Trần Phạm Minh Anh
Xem chi tiết
Công chúa Lọ Lem
Xem chi tiết
Mostost Romas
30 tháng 4 2017 lúc 8:40

\(1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)\(\frac{1}{3^{98}}\)

\(=1.98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3A-A=2A=1-\frac{1}{3^{98}}\Rightarrow A=\frac{1-\frac{1}{2^{98}}}{2}< 1\)

\(\Rightarrow B=98+A< 98+1< 99< 100\)

\(\Rightarrow B< 100\)

Nguyễn Vũ Phong
Xem chi tiết
Lê Thị Linh
Xem chi tiết
Huỳnh Phước Mạnh
23 tháng 4 2018 lúc 19:25

Xét \(B=\frac{4}{3}+\frac{10}{9}+...+\frac{3^{98}+1}{3^{98}}\)

   \(\Leftrightarrow B=\frac{3+1}{3}+\frac{9+1}{9}+...+\frac{3^{98}+1}{3^{98}}\)

   \(\Leftrightarrow B=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)(có 98 cặp số hạng)

\(\Leftrightarrow B=\left(1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)\)(có 98 số hạng 1)

\(\Leftrightarrow B=98+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)\)

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

Lấy 3A-A, ta được:

\(2A=1-\frac{1}{3^{98}}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2\cdot3^{98}}\)(*)

Thay (*) vào biểu thức B, ta được

\(B=98+\frac{1}{2}-\frac{1}{2\cdot3^{98}}< 100\)

VẬY, B<100 (ĐPCM)

Phùng Minh Quân
23 tháng 4 2018 lúc 19:28

Ta có : 

\(B=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)

\(B=\frac{3+1}{3}+\frac{9+1}{9}+\frac{27+1}{27}+...+\frac{3^{98}+1}{3^{98}}\)

\(B=\frac{3}{3}+\frac{1}{3}+\frac{9}{9}+\frac{1}{9}+\frac{27}{27}+\frac{1}{27}+...+\frac{3^{98}}{3^{98}}+\frac{1}{3^{98}}\)

\(B=1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)

\(B=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)

\(B=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

Do từ \(1\) đến \(98\) có \(98-1+1=98\) số hạng nên có \(98\) số \(1\) suy ra : 

\(B=98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\) ta có : 

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

\(2A=1-\frac{1}{3^{98}}< 1\)

Mà \(2A< 1\)\(\Rightarrow\)\(A< 1\)

Do đó : 

\(B=98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 98+1=99< 100\)

\(\Rightarrow\)\(B< 100\) ( đpcm ) 

Vậy \(B< 100\)

Chúc bạn học tốt ~