Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yu Yazata
Xem chi tiết
Minfire
Xem chi tiết
Yu Yazata
Xem chi tiết
Dat Doan
21 tháng 3 2015 lúc 21:01

A = 1/3 - 1/4 + 1/4 -1/5 + 1/5 ....-1/20-1/21 

A = 1/3 - 1/21

Hà Phương Trần Thị
21 tháng 3 2015 lúc 21:03

a,=1/3-1/4+1/4-1/5+.............+1/20-1/21

  =1/3-1/21

=2/7

b,=1/2(1/4.6+1/6.8+............+1/30.32)

    =1/2(1/4-1/6+1/5+1/8+.............+1/30-1/32)

    =1/2(1/4-1/32)

    =1/2.7/32

    =1/64

nguyentancuong
21 tháng 3 2015 lúc 21:06

a) 1/3-1/4+1/4-1/5...........+1/19-1/20+1/20-1/21=1/3-1/21

Bù.cam.vam
Xem chi tiết
dâu cute
19 tháng 4 2022 lúc 22:26

A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012

A = 1 - 1/2012

A = 2011/2012

B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012

B = 1/2 - 1/2012

B = 1005/2012

Nguyễn Ngọc Khánh Huyền
19 tháng 4 2022 lúc 22:30

a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(A=1-\dfrac{1}{2012}\)

\(A=\dfrac{2011}{2012}\)

 

b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)

\(B=\dfrac{1005}{4024}\)

 

tranthihuyen
Xem chi tiết
Inami Sakura
24 tháng 3 2017 lúc 20:07

a, 1/1.2+1/2.3+1/3.4+...+1/999.1000

=  1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000

=   1/1-1/1000

=   999/1000

b, 1/2.4+1/4.6+1/6.8+1/8.10

=  1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10

=  1/2-1/10

=   4/10  =2/5

Đặng An Nguyên
Xem chi tiết
Nguyễn Triệu Yến Nhi
8 tháng 5 2015 lúc 10:57

 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(2A=\frac{1}{1}-\frac{1}{100}\)

\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)

Câu B và C làm tương tự.

Đỗ Lê Tú Linh
8 tháng 5 2015 lúc 11:12

bạn Nhi làm sai rồi

\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được

\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)

kết quả là : \(\frac{49}{100}\)

nguyễn ngọc lam thanhh
Xem chi tiết
Lê Hồng Ngọc
8 tháng 3 2020 lúc 11:33

\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Khách vãng lai đã xóa
Lê Hồng Ngọc
8 tháng 3 2020 lúc 11:39

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)

A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)

Khách vãng lai đã xóa
Nga Nguyễn
Xem chi tiết
Bùi Thế Hào
4 tháng 12 2017 lúc 9:43

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)

=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)

=> \(B=\frac{1007}{4032}\)

Trang Vu
Xem chi tiết
Lê Tài Bảo Châu
1 tháng 5 2019 lúc 12:00

\(A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(A=\frac{1}{2}.\frac{1009}{2020}\)

\(A=\frac{1009}{4040}\)

A=1/2.4+1/4.6+1/6.8+...+1/2018.2020

  =1/2(1/2-1/4+1/4-1/6+...+1/2018-1/2020)

    =1/2(1/2-1/2020)

   =1/2.1009/2020

   =1009/4040

T.Ps
1 tháng 5 2019 lúc 12:07

#)Giải :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\)

     \(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)

     \(2A=\frac{1}{2}-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{6}-\frac{1}{6}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{2018}-\frac{1}{2018}\right)-\frac{1}{2020}\)

     \(2A=\frac{1}{2}-0-0-0-...-0-\frac{1}{2020}\)

     \(2A=\frac{1}{2}-\frac{1}{2020}\)

     \(2A=\frac{1009}{2020}\)

\(\Rightarrow A=\frac{1009}{4040}\)

#)Chúc bn học tốt :D