Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh
Xem chi tiết
Đinh Ngọc Anh
Xem chi tiết
fan FA
11 tháng 12 2017 lúc 22:08

bài 1 :

tự làm

nguyễn thảo hân
Xem chi tiết
Bùi Thế Hào
18 tháng 12 2017 lúc 9:44

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5

b/ Gọi biểu thức là A. Rút gọn A ta được: 

\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)

A=1 => x-1=2 => x=3

c/ A=-1/2 <=> x-1=-1 => x=0

d/ A=-3 <=> x-1=-6  => x=-5

Tử Dii
Xem chi tiết
Nguyễn Huyền Trang
25 tháng 12 2016 lúc 22:26

a, ĐKXĐ: x\(\ne\) 1;-1;2

b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)

=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{x-2}{x-1}\)

c, Khi x= -1

→A= \(\frac{-1-2}{-1-1}\)

= -3

Vậy khi x= -1 thì A= -3

Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^

Bui Minh
26 tháng 12 2016 lúc 21:12

a,ĐKXĐ:x#1; x#-1; x#2

b,Ta có:

A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)

=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{x-2}{x+1}\)

c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả

d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên

\(\Leftrightarrow x-2⋮x+1\)

\(\Leftrightarrow x+1-3⋮x+1\)

\(x+1⋮x+1\Rightarrow3⋮x+1\)

\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)

Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)

Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên

Vũ Nguyễn Phương Thảo
Xem chi tiết
Kiệt Nguyễn
11 tháng 3 2020 lúc 7:06

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)

\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)

b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)

\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)

+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)

+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)

Vậy x nguyên bằng 0 thì A nguyên

c) \(\left|A\right|=A\Leftrightarrow A\ge0\)

\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)

Vậy \(x>\frac{1}{2}\)thì |A| = A

Khách vãng lai đã xóa
Tran Le Khanh Linh
11 tháng 3 2020 lúc 9:12

a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)

Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1

Mà x nguyên => 2x-1 nguyên

=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng

2x-1-2-112
2x-1023
x-1/2013/2

Đối chiếu điều kiện

=> x=0

Khách vãng lai đã xóa
Hồ Quỳnh Anh
Xem chi tiết
Vũ Đức Huy
Xem chi tiết
Đoàn Đức Hà
29 tháng 11 2021 lúc 22:07

Điều kiện xác định của \(P\)là: 

\(\hept{\begin{cases}x^2+2x+1\ne0\\x^2-1\ne0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)

\(=\left[\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\frac{1-x^2}{x}\)

\(=\frac{2x}{\left(x+1\right)^2\left(x-1\right)}.\frac{1-x^2}{x}=\frac{-2}{x+1}\)

Để \(P\)nguyên mà \(x\)nguyên suy ra \(x+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow x\in\left\{-3,-2,0,1\right\}\)

Đối chiếu điều kiện ta được \(x\in\left\{-3,-2\right\}\)thỏa mãn. 

Khách vãng lai đã xóa
hieu nguyen
Xem chi tiết
Mafia
25 tháng 3 2018 lúc 15:20

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

Despacito
25 tháng 3 2018 lúc 14:52

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)

Mafia
25 tháng 3 2018 lúc 15:04

theo câu a) \(A=\frac{-1}{x-2}\)  với ĐKXĐ: \(x\ne\pm2\)

b) \(\left|2x-1\right|=3\)

\(\Rightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)   \(\Rightarrow x=-1\)  ( vì \(x=2\)  ko TM ĐKXĐ )

+) khi \(x=-1\)thì \(A=\frac{-1}{-1-2}=\frac{-1}{-3}=\frac{1}{3}\)

vậy khi \(x=-1\)  thì \(A=\frac{1}{3}\)

Dư Hạ Băng
Xem chi tiết
Despacito
9 tháng 12 2017 lúc 13:01

\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\)   \(ĐKXĐ:x\ne\pm1\)

\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)

\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)

\(M=\frac{4+x-2}{x-1}\)

\(M=\frac{x+2}{x-1}\)

vậy \(M=\frac{x+2}{x-1}\)

Võ Thị Huyền Diệu
Xem chi tiết