Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Danh
Xem chi tiết
Tran Thi Tam Phuc
Xem chi tiết
khải nguyên gia tộc
8 tháng 10 2016 lúc 20:49

A*2=(3-1)*(3+1)*(3^2+1)*....*(3^16+1)

A*2=(3^2-1)*(3^2+1)*(3^4+1)....*(3^16+1)

A*2=((3^4)^2-1^2)*(3^4+1)......*(3*16+1)

2*A=(3^8-1)*...(3^16+1)

bạn lm tiếp nha

Nguyen Thi Tram Oanh
8 tháng 10 2016 lúc 20:58

nhân vào A 3^2-1

thururu
21 tháng 7 2017 lúc 20:04

\(B=3^{32}-1=\left(3^{16}+1\right)\left(3^{16}-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^8-1\right)\)

\(=\)\(\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^{\text{4}}+1\right)\left(3^2+1\right)\left(3^2-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)

\(=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(B=2A\)

đúng 100% k nha

nguyen thi ngoc
Xem chi tiết
Dũng Senpai
27 tháng 6 2016 lúc 21:12

S=1/30+1/31+1/32+1/33+...+1/59+1/60

S có 31 phân số,ta thấy:

1/30>1/62                             1/31>1/62                          1/32>1/62         ............          1/60>1/62

Vậy:

S>31.1/62

S>31/62

S>1/2

Vậy S>1/2

Chúc em học tốt^^

Công chúa họ Trần
Xem chi tiết
Nguyễn Ngọc Nhi
3 tháng 4 2016 lúc 11:39

A = 31/32

Ta có 1 - 31/32 = 1/32

         1 - 2005/2006 = 1/2006

Nguyễn Ngọc Nhi
3 tháng 4 2016 lúc 11:40

1/32 > 1/2006

nên A < 2005/2006

Nguyễn Tú Hà
Xem chi tiết
HT.Phong (9A5)
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

Chu Mạnh Cường
Xem chi tiết
lengoclinh
Xem chi tiết
Nguyễn Joker
Xem chi tiết
Phạm Việt Nam
Xem chi tiết