a,Cho abc - deg chia hết cho 13. CMR : abcdeg chia hết cho 13
b,cho abc chia hết cho 7. CMR 2a+3b+c chia hết cho 7
CMR
a) 4ab = 5cd ( gạch ngang trên đầu )
CMR abcd chia hết cho 9
b) abc + deg chia hết cho 37
CMR abcdeg chia hết cho 37
c) abc - deg chia hết cho 7
CMR abcdeg chia hết cho 7
e) abc chia hết cho 27 . CMR bca chia hết cho 27
Chứng minh rằng
Nếu abc chia hết cho 7 thì 2a + 3b + c chia hết cho 7
Nếu abc - deg chia hết cho 13 thì abcdeg ciha hết cho 13
Ai nhanh nhất mình tick
abc = a . 100 + b . 10 + c
= (a . 98 + b . 7) + 2 . a + 3 . b + a
Ta có : a.98 + b.7 chia hết cho 7
=> 2a + 3b + c chia hết cho 13
Bài 1) Cmr nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
Bài 2)Tìm a biết 20a20a20a chia hết cho 7
Bài 3) Cho abc + deg chia hết cho 37 . cmr abcdeg chia hết cho 37
Bài 4) Cho abc -deg chia hết cho 7 .cmr abcdeg chia hết cho 7
Bài 5) Tím STN a và b ,sao cho a chia hết cho b và b chia hết cho a
Làm đúng 3 bài mình cho 3 like
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 ( a > b )
c, cho abc chia hết cho 27 . CMR số bca chia hết cho 27
d, cho abc - deg chia hết cho 7 . CMR abcdeg chia hết cho 37
e, cho abc - deg chia hết cho 7 . CMR abcdeg
g, cho 8 số tự nhiên có 3 chữ số . CMR trong 8 số đó tồn tại hai số mà khi viết lên trên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9
abc-deg chia hết cho 7 CMR :abcdeg chia hết cho 7
abcdeg = 1000abc + deg
= 1001abc - abc + deg
= 143.7.abc - (abc - deg)
Ta có: 143.7.abc chia hết cho 7
abc - deg chia hết cho 7
=> abcdeg chia hết cho 7.
Chúc bn học tốt!
Chứng tỏ rằng :
a) Nếu \(\left(\overline{abc}-\overline{deg}\right)\)chia hết cho 13 thì \(\overline{abcdeg}\) chia hết cho 13 .
b) Nếu \(\overline{abc}\) chia hết cho 7 thì ( 2a + 3b + c ) chia hết cho 7 .
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
chứng minh rằng
nếu ( abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13
nếu abc chia hết cho 7 thì ( 2a +3b +c) chia hết cho 7
cho abc - deg chia hết cho 7 CMR abcdeg chia hết cho 7
Ta có : \(\overline{abcdeg}=\overline{abc000}+\overline{deg}\)
\(=\overline{abc}.1000+\overline{deg}\)
\(=\overline{abc}.1001-\overline{abc}+\overline{deg}\)
\(=1001.\overline{abc}-\left(\overline{abc}-\overline{deg}\right)\)
Mà 1001\(⋮\)7 nên \(\hept{\begin{cases}1001\overline{abc}⋮7\\\overline{abc}-\overline{deg}⋮7\end{cases}}\)
Vậy \(\overline{abcdeg}⋮7\)
cho abc chia hết cho 7 cmr 2a+3b+c chia hết cho 13