Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2018 lúc 9:26

“Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại). 

Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có : a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1). 

Ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2). 

Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3). 

Ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4). 

Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13. 

Vì b + d = 17 nên d = 17 - 13 = 4. 

Vì a + b = 29 nên a = 29 - 13 = 16. 

Ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17. 

Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau :

Nguyễn Tuấn Đạt
Xem chi tiết
Hồ Huỳnh Nguyên Bảo
Xem chi tiết
Khải oppa
19 tháng 1 2016 lúc 20:08

a=16;b=13;c=1;d=4

(Quy tac:tong cac so trong moi cột doc va cột ngang bang 34)

 Tick minh nha Bao!!! 

Black Angel
19 tháng 1 2016 lúc 20:09

Bí mật : tổng các hàng và các cột đều bằng 34

 

a32b
510118
96712
d1514c

còn bảng thì tự điền

 

 

kha trần
Xem chi tiết
doan le phong
16 tháng 9 2014 lúc 18:31

tong cua hai hang cheo la :31 

a=7;b=7;c=7;d=7

nguyễn hoàng mỹ dân
19 tháng 3 2015 lúc 12:41

Bài giải: 
“Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại).
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có: a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1).
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2).
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3).
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4).
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13.
Vì b + d = 17 nên d = 17 - 13 = 4.
Vì a + b = 29 nên a = 29 - 13 = 16.
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17.
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau: 

O0o_ Kỷ Băng Hà _o0O
Xem chi tiết
Võ Đông Anh Tuấn
4 tháng 7 2016 lúc 15:19

Bài giải: 
“Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại).
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có: a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1).
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2).
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3).
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4).
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13.
Vì b + d = 17 nên d = 17 - 13 = 4.
Vì a + b = 29 nên a = 29 - 13 = 16.
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17.
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau: 

163213
510118
96712
415141
 
O0o_ Kỷ Băng Hà _o0O
4 tháng 7 2016 lúc 15:21

Bài giải: 
“Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại).
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có: a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1).
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2).
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3).
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4).
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13.
Vì b + d = 17 nên d = 17 - 13 = 4.
Vì a + b = 29 nên a = 29 - 13 = 16.
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17.
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau: 


Nhận xét: Hình vuông trên gọi là hình vuông kì ảo (hoặc ma phương) cấp 4. Người ta đã nhìn thấy nó lần đầu tiên trong bản khắc của họa sĩ Đuy-rơ năm 1514. Các bạn có thể thấy : Tổng bốn số trong bốn ô ở bốn góc cũng bằng 34.

Ủng hộ nhé! >_<

Trần Quỳnh Mai
4 tháng 7 2016 lúc 15:24

“Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại).
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có: a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1).
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2).
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3).
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4).
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13.
Vì b + d = 17 nên d = 17 - 13 = 4.
Vì a + b = 29 nên a = 29 - 13 = 16.
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17.
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau: 

Manchester United
Xem chi tiết
Bùi Thị Thu Hòa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 9 2017 lúc 17:21

Tích của mỗi hàng, cột, đường chéo là:

100.10-5.102 = 10–3

Từ đó ta điền được vào các ô trống còn lại như sau:

100 10-5 102
101 10-1 10-3
10-4 103 10-2
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2019 lúc 8:18

Trong hình đã cho có 4 vuông được ghép từ hai hình tam giác; 1 hình vuông được ghép từ 4 hình tam giác và 1 hình vuông to bên ngoài.

Vậy hình đã cho có tất cả 6 hình vuông.

Số cần điền vào chỗ trống là 6.

Trần Gia Hân
22 tháng 2 2022 lúc 16:40

5 hinh vuong

Khách vãng lai đã xóa
Nguyễn Hồng Phước
22 tháng 2 2022 lúc 17:39

6 hình vuồng

Khách vãng lai đã xóa