Cho A bằng n cộng 1 phần 2n cộng 3 (n thuộc N).Chứng tỏ A là phân số tối giản
Cho A bằng n cộng 1 phần 2n cộng 3 (n thuộc N).Chứng tỏ A là phân số tối giản
Chứng tỏ rằng mọi phân số dạng 2n+1 phần n+3 (n thuộc N) đều là phân số tối giản.
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
cho a = 1+2+3+....+n và b = 2n +1 ( với n thuộc tập hợp số tự nhiên ,n > hoặc = 2 ). chứng tỏ rằng phân số a phần b tối giản
Cho a bằng n +1 trên 2n+3. Chứng tỏ rằng A là phân số tối giản với mọi n là số nguyên tố
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (
đấy nè Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản
Cho n thuộc Z. Chứng tỏ các phân số sau là phân số tối giản:
a) n + 7 n + 6
b) 3 n + 2 n + 1
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
chứng tỏ rằng:
a) 15n+1/ 30n+1 là phân số tối giản (n thuộc Z )
b) n3+2n/n4+3n2+1 là phân số tối giản ( n thuộc Z )
bài 1 x-1 phần x cộng 1 bằng 8 phần 9
bài 2 tính bằng cách hợp lý
câu a mở ngoặc 21 phần 31 cộng -16 phần 7 đóng ngoặc cộng mở ngoặc 44 phần 53 cộng 10 phần 31 đóng ngoặc cộng 9 phần 53
câu b -5 phần 7 cộng 3 phần 4 cộng 1 phần -5 cộng 2 phần -7 cộng -1 phần -4
bài 3
chứng tỏ rằng với mọi số nghuyên n phânsố 3n-5 phần 3-2n là phân số tối giản
ai nhanh và đúng thì mình tích