Tìm x thuộc Z để biểu thức đạt giá tri lớn nhất :
A=-(x-3)4+2010
\(C=\frac{3\text{|}x\text{|}+2}{4\text{|}x\text{|}-5}\)
a. Tìm x thuộc Z để C đạt giá trị lớn nhất, tìm giá tri lớn nhất đó.
b. Tìm x thuộc Z để C là số tự nhiên
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
Tìm x thuộc Z để biểu thức P=2019-|x-3|^2019 đạt giá trị lớn nhất
Cho biểu thức: G=2x+3/x-1
A) tìm x thuộc Z để G có giá trị nguyên.
B) Tìm c thuộc Z để G đạt giá trị lớn nhất
Tìm x thuộc Z để biểu thức sau đạt giá trị lớn nhất
\(A=\frac{3|x|+2}{4|x|-5}\)
Tìm x THUỘC Z để biểu thức:
a) /x-3/-7 đạt giá trị nhỏ nhất
b)/x+1/+/-5/ đạt giá trị nhỏ nhất
c)7-/x-2/ đạt giá trị lớn nhất
d) -9-/x+5/ đạt giá trị lớn nhất
cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)
tìm x thuộc Z để biểu thức A=|x-1|+|x-2|+|x-3|+|x-4| đạt giá trị nhỏ nhất
A=|x-1|+|x-2|+|x-3|+|x-4|
=> A=|x-1|+|x-2|+|3-x|+|4-x|\(\ge\)|x-1+x-2+3-x+4-x|
=>A\(\ge\)4
Dấu "=" xảy ra ⇔ (x-1)(x-2)(3-x)(4-x)=0
Còn bạn tự làm nôt nhé
Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$
Bài 1 : Tìm x nguyên để biểu thức sau đạt giá trị nhỏ nhất :
A = ( x - 1 )2 + 2016
B = /x +4/ +2017
Bài 2 : Tìm x nguyên để biểu thức sau đạt giá trị lớn nhất :
P = 2010 - ( x+1)2016 Q=2010_ / 3-x /
Bài 1:
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: |x + 4| \(\ge\)0 với mọi x
=> B = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4
Vây GTNN của B = 2017 tại x = -4
Bài 2:
a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x
=> P = 2010 - (x + 1)2016 \(\ge\)2010
Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1
Vậy GTLN của P = 2010 tại x = -1
b, Ta có: |3 - x| \(\ge\)0 với mọi x
=> Q = 2010 - |3 - x| \(\ge\)2010
Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3
Vậy GTLN của Q = 2010 tại x = 3