có hay ko số tự nhiên n để 2002+n2 là số chính phương
1) Tích của 4 số tự nhiên liên tiếp có phải là 1 số chính phương không?
2) Tìm số tự nhiên n có 2 chữ số, biết rằng 2 số 2n+1 và 3n+1 đồng thời là 2 số chính phương.
3) Có hay không số tự nhiên n để
\(2002+n^2\)
là số chính phương?
Có hay ko số tự nhiên n để 2020 + n là số chính phương
có hay ko số tự nhiên n để 2010 + n2 là số chính phương
Có tồn tại số tự nhiên n để 2006 + n2 là một số chính phương hay ko? Vì sao?
ko vì
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
ko cần làm phức tạp như thế
ngắn gọn thôi
ta có
n^2 chia 4 dư 0;1
nên 2006+n^2 chia 4 dư 2;3 nên ko tồn tại n t/m n^2+2006 là SCP
Chứng minh rằng không có số tự nhiên n nào để n^2 + 2002 là số chính phương
Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)
\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)
mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)
Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương
CMR: Không có số tự nhiên n nào để n2+2002 là số chính phương
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
chứng minh rằng ko tồn tại số tự nhiên n nào để n ^2 +2002 lad số chính phương
Giả sử : n^2 + 2006 là số chính phương
=> n2 + 2006 = k2 ( k thuộc N )
=> 2006 = k2 - n2 = ( k - n ).( k + n )
Ta có : 2006 = 2 x 1003
=> k - n = 2 => n = 2 + k
k + n = 1003
=> k + 2 + k = 1003
=> 2k = 1001 => k = 1001/2 ( loại )
Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương
kudo shinichi làm sai đề rồi phải như thế này nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
k cho tớ nha
ai k mh mh k lại
Chứng minh rằng không có số tự nhiên n để n2 + 2002 là số chính phương
giả sư tồn tại n sao cho n2+2002 là số chính phương
Đặt n2+2002=m2 (m thuộc N )
=> m2-n2 = 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)
vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2
=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.
Chứng minh không có số tự nhiên n thỏa mãn để n×n+2002 là số chính phương