Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thị Huyền Anh
Xem chi tiết
Trà My
16 tháng 4 2016 lúc 9:31

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

SKT_ Lạnh _ Lùng
16 tháng 4 2016 lúc 9:31

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Dương Đức Hiệp
16 tháng 4 2016 lúc 9:40

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Nguyen Minh Thu
Xem chi tiết
thanh tam tran
Xem chi tiết
Toàn Quyền Nguyễn
13 tháng 1 2017 lúc 12:31

Xét p=2, ta có: 4p+1=9 là số chính phương.
Xét p>2, vì p là số nguyên tố nên p=2k+1 (k∈N∗)
Ta có: 4p+1=4(2k+1)+1=8k+5
Mặt khác 4p+1 là một số chính phương lẻ nên chia 8 dư 1.
Do đó với p>2 thì 4p+1 không là số chính phương.
Vậy số nguyên tố p để 4p+1 là số chính phương là 2. 

Nuyen Gia
Xem chi tiết
Cao Thi Thuy Duong
Xem chi tiết
anhduc1501
20 tháng 4 2016 lúc 11:01

a)giả sử \(n^2+2006\) là số chính phương, khi đó đặt \(n^2+2006=a^2\left(n\in Z\right)\)

\(=>\left(a+n\right)\left(a-n\right)=2006\) (*)

TH1: nếu (a-n) và (a+n) khác tính chẵn lẻ thì (*) sai  

TH2: nếu (a-n) và (a+n) cùng tính chẵn lẻ thì (a-n) chia hết cho 2, (a+n) chia hết cho 2 => VT chia hết cho 4

mà VP =2006 không chia hết cho 4 nên không tồn tại n

b) n là số nguyên tố >3 nên n không chia hết cho 3=> n= 3k+1 hoặc n=3k+2

Với n= 3k+1 thì \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+2007\) chia hết cho 3=> \(n^2+2006\) là hợp số

Với n=3k+2 thì \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+2010\) chia hết cho 3=> \(n^2+2006\) là hợp số

Đinh Thị Hạnh
Xem chi tiết
sono chieri
23 tháng 2 2016 lúc 19:40

3 chắc chắn 100%

kook ơi là kook
23 tháng 2 2016 lúc 19:41

tớ cxng chẳng biết cái này

Nguyễn Hương Giang
Xem chi tiết
Thanh Tùng DZ
23 tháng 1 2020 lúc 20:27

Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )

Chứng minh x+2 và 4x2 + 6x - 3 nguyên tố cùng nhau nên để 4x3 + 14x2 + 9x - 6 là số chính phương 

thì x + 2 và 4x2 + 6x -3 là số chính phương

đặt x + 2 = a2 ; 4x2 + 6x -3 = b2

\(\Rightarrow x=a^2-2\)  

Thay vào ta có : 4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2

\(\Rightarrow16a^4-40a^2+4=4b^2\Rightarrow\left(4a^2-2b-5\right)\left(4a^2+2b-5\right)=21\)

Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5

..... tìm được x = 2

Khách vãng lai đã xóa
Nguyễn Thị Ánh Dương
Xem chi tiết
Nguyen thi thao ly
Xem chi tiết