Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
le syn dùog
Xem chi tiết
Đào Hồng Lĩnh
Xem chi tiết
Đào Hồng Lĩnh
19 tháng 3 2017 lúc 20:15

giúp vs

Đào Hồng Lĩnh
Xem chi tiết
nguyễn Thị Hồng Ngọc
19 tháng 3 2017 lúc 20:51

b) 

A=1.2+2.3+3.4+...+2010.2011

3A=1.2.3+2.3.3+3.4.3+...+2010.2011.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2010.2011.(2012-2009)

=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-2009.2010.2011+2010.2011.2012

=2010.2011.2012

=>A=2010.2011.2012 / 3

=2710908440

❤️Lê Tài Bảo Châu❤️
Xem chi tiết
Xyz OLM
21 tháng 7 2019 lúc 15:27

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010}\)

\(\Rightarrow x+1=2010\)

\(\Rightarrow x=2010-1\)

\(\Rightarrow x=2009\)

Vậy x = 2009

Minh nhật
21 tháng 7 2019 lúc 15:29

=> 1-1/2+1/2-1/3+1/3- 1/4 +... +1/x -1/x+1 = 2009/1020

=> 1 - 1/x+1=2009/2010

=> (x+1-1)/x+1=2009/2010

=> x/x+1=2009/2010

=>x=2009

Nancy Jewel McDonie
Xem chi tiết
nguyen duc thang
8 tháng 6 2018 lúc 9:08

b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1

๛Ňɠũ Vị Čáէツ
8 tháng 6 2018 lúc 9:08

b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

c,Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(.....\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                             \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                               \(=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)

Ngu Như Bò
Xem chi tiết
VRCT_Ran Love Shinichi
13 tháng 9 2016 lúc 16:07

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

Nguyễn Đình Chí
12 tháng 10 2022 lúc 21:53

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

lovely
Xem chi tiết
Nguyễn Doãn Bảo
14 tháng 2 2016 lúc 8:30

trong sách nâng cao và phát triển có đó bạn

Nguyễn Thị Thanh Hải
14 tháng 2 2016 lúc 8:30

1 – 2 – 3 + 4 + 5 – 6 – 7 + 8 +…+ 2009 – 2010 – 2011 + 2012.
= (1 – 2 – 3 + 4) +( 5 – 6 – 7 + 8) +…+ (2009 – 2010 – 2011 + 2012)
= 0 + 0 + ...+ 0 = 0

Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 8:32

bai toan qua kho

Xem chi tiết
Nguyễn Huy Tú
27 tháng 3 2022 lúc 7:28

\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)

\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)

\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)

\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)

Nguyễn Huy Tú đã xóa
Sơn Mai Thanh Hoàng
27 tháng 3 2022 lúc 7:29

S=22010 - 22009 - 22008 -...-2-1

=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1

2S=22011 - 22010 - 22009 - ... - 22 -2

=>S=1-22011