Giá trị x>0 thỏa mãn: \(\frac{x}{15}=\frac{y}{9}\) và xy = 15
Giá trị x>0 thỏa mãn
\(\frac{x}{15}=\frac{y}{9}\) và xy=15
giúp mình giải nha
\(\frac{x}{15}=\frac{y}{9}\Rightarrow\frac{x}{5}=\frac{y}{3}\Rightarrow y=\frac{3}{5}x\)
Thay vào : \(xy=15\Rightarrow x\cdot\frac{3}{5}x=15\Rightarrow x^2=25\)
Mà x>0 => x= 5.
x/15 = y/9
x.9 = 15.y
x/y=9/15=3/5
Mà 3.5 =15
Nên x=3, y=5
Vậy x=3
\(\frac{x}{15}=\frac{y}{9}\)
=> 9x=15y => 3x=5y
Mà bạn coi lại đề bài đi có phải là x-y không?
1,Giá trị x thỏa mãn:
(x-2)2\(\le\)0
2,Số giá trị của x thỏa mãn:
/\(x+\frac{5}{2}\)/+/\(\frac{2}{5}-x\)/=0
3,Già trị x>0 thỏa mãn:
\(\frac{x}{15}=\frac{y}{9}\)và xy =15
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
giá trị x 0 thỏa mãn x/15=y/9 va xy=15
ta có:\(\frac{x}{15}=\frac{y}{9}=k\Rightarrow x=15k;y=9k\)
ta có: 15k.9k=15
135.k^2=15
k^2=1/9 suy ra k= cộng trừ 1/3
* với k=-1/3, ta có: x=-1/3.15=-5
y=-1/3.9=-3
*với k=1/3, ta có: x=1/3.15=5
y=1/3.9=3
đặt x/15=y/9=k =>x=15k =>y=9k vì x.y=15=>15k.9k=15 135k^2=15 k^2=15:135=1/9 =>k=-1/9 hs k=1/9 với k=-1/9 => x/15=-1/9=>x=-15/9 y/9=-1/9=>y=-1 tương tự bn tự làm vs TH2
giá trị x >0 thỏa mãn
\(\frac{x}{15}=\frac{y}{9}\)vãy=15
Cho x,y>0 thỏa mãn \(\hept{\begin{cases}x\ge y\ge\frac{2}{15}\\xy\ge\frac{4}{15}\end{cases}}\)
Tìm giá trị nhỏ nhất của\(\frac{1}{x}+\frac{1}{y}\)
Giá trị > 0 thỏa mãn:\(\frac{x}{15}=\frac{y}{9}và:xy=15\)là...........
Đặt \(\frac{x}{15}=\frac{y}{9}\) = k => x = 15k; y = 9k
=> xy = 15k.9k = 135.k2 = 15
=> k2 = \(\frac{15}{135}=\frac{1}{9}\)
=> k \(\in\){\(-\frac{1}{3};\frac{1}{3}\)}
Mà x,y > 0 => k > 0
=> k = \(\frac{1}{3}\)
=> x = \(15.\frac{1}{3}=5\)
=> y = 15:5 = 3
By NCTK
Cho x, y, z là các số thực dương thỏa mãn \(xyz\ge7\). Tìm giá trị nhỏ nhất của biểu thức \(K=\sqrt{\frac{529}{25}x^2-\frac{602}{15}xy+\frac{238}{9}y^2}+\sqrt{\frac{529}{25}y^2-\frac{602}{15}yz+\frac{238}{9}z^2}+\sqrt{\frac{529}{25}z^2-\frac{602}{15}zx+\frac{238}{9}x^2}\)
P/S: Bài hệ số bất định này khá dễ và cũ nên mik cố tỉnh để số lớn và giả thiết xấu nha, lần sau sẽ chế đề khó và đẹp hơn
1) tìm tất cả bộ 3 số dương x,y ,z thỏa mãn ?
2x2016=y15+z15; 2y2016=z15+x15; 2z2016=x15+y15
2) cho x+y+xy=1. tìm giá trị nhỏ nhất của P= \(\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
1/
Đề \(\Rightarrow z^{15}+x^{15}-\left(y^{15}+z^{15}\right)=2\left(y^{2016}-x^{2016}\right)\)
\(\Rightarrow x^{15}-y^{15}=2\left(y^{2016}-x^{2016}\right)\)
+Nếu \(x=y\text{ thì }VT=0=VP\)
+Nếu \(x>y\text{ thì }VT>0>VP\)
+Nếu \(x
\(1=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}=\left(\frac{x+y}{2}+1\right)^2-1\)
\(\Rightarrow\left(\frac{x+y}{2}+1\right)^2\ge2\Rightarrow\frac{x+y}{2}+1\ge\sqrt{2}\Rightarrow x+y\ge2\sqrt{2}-2\)
\(1=x+y+xy\ge2\sqrt{xy}+xy=\left(\sqrt{xy}+1\right)^2-1\)
\(\Rightarrow\left(\sqrt{xy}+1\right)^2\le2\Rightarrow\sqrt{xy}+1\le\sqrt{2}\Rightarrow\sqrt{xy}\le\sqrt{2}-1\)
\(\Rightarrow xy\le3-2\sqrt{2}\)
\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}=\frac{x+y+xy}{x+y}+\frac{x+y}{xy}\)
\(=1+\left(\frac{xy}{x+y}+\frac{\left(\sqrt{2}-1\right)^2}{4}.\frac{x+y}{xy}\right)+\frac{1+2\sqrt{2}}{4}.\frac{x+y}{xy}\)
\(\ge1+2\sqrt{\frac{xy}{x+y}.\frac{\left(\sqrt{2}-1\right)^2}{4}\frac{x+y}{xy}}+\frac{1+2\sqrt{2}}{4}.\frac{2\sqrt{2}-2}{3-2\sqrt{2}}=\frac{5+5\sqrt{2}}{2}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\sqrt{2}-1\)
Cho x,y,z khác 0 thỏa mãn xy+yz+zx=0 và x+y+z=-1 Tinh giá trị của M= \(\frac{xy}{z}\)+ \(\frac{zx}{y}\) + \(\frac{yz}{x}\)
\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
\(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)
\(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)
\(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)
\(=0-2\left(x+y+z\right)\)
\(=0-2.\left(-1\right)=0-\left(-2\right)=2\)
Chúc bạn học tốt.