Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Idol ichigo
Xem chi tiết
Vũ Thị Huyền
Xem chi tiết
Trương Ngọc Thuận
Xem chi tiết
zZz Cool Kid_new zZz
3 tháng 6 2019 lúc 17:11

ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)

\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)

\(=3+\left|x-2\right|+\left|y-3\right|\)

\(\ge3\)

Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)

Vậy \(x=2;y=3\)

Nguyễn Đăng Nhật Minh
3 tháng 6 2019 lúc 17:11

(x-1) + (x-2) + (x-3) + (x-4) = 3

(x+x+x+x) - (1+2+3+4) = 3

X x 4 - 10 = 3

X x 4 = 3 + 10

X x 4 = 13

x = 13 : 4

x = \(\frac{13}{4}\)

Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Bá Thọ
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Vũ Thị Thu Huyền
Xem chi tiết
Lê Tài Bảo Châu
17 tháng 7 2019 lúc 14:28

Làm mẫu 1 phần :

a) \(|3x-1|+|x-1|=4\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

             \(x-1=0\Leftrightarrow x=1\)

Lập bảng xét dấu :

3x-1 x-1 1/3 1 0 0 - - - + + + +

+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)+\left(1-x\right)=4\)

\(2-4x=4\)

\(4x=-2\)

\(x=\frac{-1}{2}\)( chọn )

+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)+\left(x-1\right)=4\)

\(4x-2=4\)

\(4x=6\)

\(x=\frac{3}{2}\)( chọn )

Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)