Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm Lê minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2019 lúc 13:18

Phương trình x + x − 1 = 0 có chứa căn thức bên không là phương trình bậc hai một ẩn.

Phương trình 2x + 2y2 + 3 = 9 có chứa hai biến x; y nên không là phương trình bậc hai một ẩn.

Phương trình 1 x 2 + x + 1 = 0 có chứa ẩn ở mẫu thức nên không là phương trình bậc hai một ẩn.

Phương trình 2 x2 + 1 = 0 và x2 + 2019x = 0 là những phương trình bậc hai một ẩn.

Vậy có hai phương trình bậc hai một ẩn trong số các phương trình đã cho.

Đáp án cần chọn là: A

Lăng Ngọc Khuê
Xem chi tiết
Nguyễn Huy Tú
28 tháng 7 2021 lúc 12:50

undefined

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 12:55

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 12:29

ĐK:  y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1

T H 1 :   y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o   t / m ) T H 2 :   x ≠ 1 , y ≠ 1  

Đưa pt thứ nhất về dạng tích ta được

( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0

Thay y= 2-x vào pt thứ 2 ta được  x 2 + x − 3 = 3 x + 7 − 2 − x

⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0

Do  x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0

Vậy  x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 11:46

Ta có  2 x + y = 5 m − 1 x − 2 y = 2

⇔ y = 5 m − 1 − 2 x x − 2 5 m − 1 − 2 x = 2 ⇔ y = 5 m − 1 − 2 x 5 x = 10 m

⇔ x = 2 m y = m − 1

Thay vào x 2   –   2 y 2   =   − 2 ta có

x 2 – 2 y 2 = − 2 ⇔ ( 2 m 2 ) – 2 ( m − 1 ) 2   = − 2 ⇔ 2 m 2 + 4 m = 0 ⇔ m = 0 m = − 2    

Vậy m ∈ {−2; 0}

Đáp án: C

Nguyệt Huyết Hắc Bạch
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 7:23

a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)

\(P=3\left(x+y\right)^2-2.5-100\)

\(P=3.5^2-110\)

\(P=-35\)

b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)

\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)

\(Q=5^3-2.5^2+25\)

\(Q=100\)

ngọc hân
Xem chi tiết
bepro_vn
21 tháng 8 2021 lúc 21:28

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Văn Thị Kim Chi
Xem chi tiết