Tìm số nguyên tố p sao cho p + 74 và p + 1994 cũng là các số nguyên tố.
Tìm số nguyên tố P sao cho các số p+94 và p+1994 cũng là số nguyên tố.
a. tìm số nguyên tố p sao cho q + 74 và q + 1994 là các số nguyên tố
b. chứng minh rằng hai số lẻ liên tiếp bao giơ cũng nguyên tố cùng nhau
d. chứng minh rằng abcabc chia hết cho 7;11 và 13
c. abcabc=abc.1000+abc=abc.1001
Vì 1001 chia hết cho 7; 11 ;13 nên abcabc chia hết 7;11;13
đi rồi tôi làm tiếp
tìm số nguyên tố P sao cho
a. P+94 và P+1994 cũng là các số nguyên tố
b..P^2+44 là số nguyên tố
Tìm số nguyên tố p sao cho p + 94 và p + 1994 cũng là số nguyên tố
Nếu p=2 thì p+94=2+94=96
p+1994=2+1994=1996 ( ko phải số nguyên tố loại)
Nếu p = 3 thì : p+94=3+94=97
p+1994=3+1994=1994(chọn)
Biểu thị dưới dạng 3k+1 và 3k+2
3k+1 và 1997=3(k+1+1997)
=3k+1998
3k+2 và 97 = 3(k+2+97)
=3k+99
Vậy p =3
tìm số nguyên tố p sao cho p+74 và p+1994 là cách số nguyên tố. Cho mk xin thêm lời giải nka!
a, Tìm số nguyên tốp sao cho p+74 và p+1994 là các số nguyên tố
b, Tìm 2 số a;b thuộc N biết a+b=270 và UCLN [a,b]=45
c, Chứng minh rằng : Hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau.
d, chứng minh rằng abcabc chia hết cho 7,11,13
c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)
Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .
Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)
d)
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)
Tìm số nguyên tố p sao cho:
a, p+10,p+14 cũng là số nguyên tố
b, p+94,p+1994 cũng là số nguyên tố
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
a . Tìm các số nguyên tố p sao cho p + 11 cũng là số nguyên tố .
b . Tìm các số nguyên tố p sao cho p + 8 và p + 10 cũng là số nguyên tố .