1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
tìm GTNN của biểu thức\(\sqrt{x-2}+\sqrt{6-x}\)
tìm GTNN của biểu thức
\(\sqrt{x-2}+\sqrt{6-x}\)
Tìm GTNN của biểu thức A=(x-1)(x-2)(x-5)(x-6)
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
tìm GTNN của biểu thức (x-1)(x+2)(x+3)(x+6)
(x - 1)(x + 2)(x + 3)(x + 6) = (x -1)(x + 6) (x + 2)(x+3) = (x2 + 5x - 6) (x2 + 5x + 6)
đặt x2 + 5x = t
thay vào được: (t - 6) (t+ 6) = t2 - 36
có: (x - 1)(x + 2)(x + 3)(x + 6) = t2 - 36 = (x2 + 5x)2 - 36
Vậy giá trị nhỏ nhất của biểu thức là -36
Bài 1.
a. TÌM GTNN CỦA BIỂU THỨC
A= x^2 + 5x +7
b. TÌM GTLN CỦA BIỂU THỨC
B= 6x - x^2 - 5
c. TÌM GTNN CỦA BIỂU THỨC
C= (x -1) (x - 2)(x + 3)(x +6)
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
Giúp mình vs
1) Tìm GTLN của biểu thức: P= 3+15x-5x2
2) Tìm GTNN của biểu thức B= (x-1).(x+2).(x+3).(x+6)
1) P = \(3+15x-5x^2\)\(=-5x^2+15x+3=-5\left(x^2-3x-\frac{3}{5}\right)\) \(=-5\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}-\frac{9}{4}-\frac{3}{5}\right)\)= \(-5\left[\left(x-\frac{3}{2}\right)^2-\frac{57}{20}\right]=-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}\)
vì \(\left(x-\frac{3}{2}\right)^2>=0\) => \(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=0\) =>\(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=\frac{57}{4}\)
=> GTLN của P là \(\frac{57}{4}\)tại x =\(\frac{3}{2}\)
2) GTNN của B là -36
cho biểu thức P(x) = \(|2x-6|+|2x-2|\)
a, tìm x để P(x)=6
b, tìm GTNN của biểu thức P(x)
\(\left|2x-6\right|=\hept{\begin{cases}2x-6\left(khi2x-6\ge0\right)\\6-2x\left(khi2x-6< 0\right)\end{cases}}\)
\(\left|2x-6\right|=\hept{\begin{cases}2x-6khix\ge3\\6-2xkhix< 3\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khi2x-2\ge0\\2-2xkhi2x-2< 0\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khix\ge1\\2-2xkhix< 1\end{cases}}\)
KHI \(x< 1\):
\(6-2x+2-2x=6\)
\(\Rightarrow-4x+8=6\)
\(\Rightarrow4x=2\Rightarrow x=\frac{1}{2}\)(THỎA MÃN)
KHI \(1\le x< 3\)
\(6-2x+2x-2=6\)
\(\Rightarrow4=6\)9VÔ NGHIỆM)
KHI: \(x\ge3\)
\(\Rightarrow2x-6+2x-2=6\)
\(\Rightarrow4x=14\Rightarrow x=\frac{7}{2}\)(THỎA MÃN)