Tính: 1^2+2^2+3^2+...+50^2
Tính
a, 2^2+4^2+6^2+...........+50^2
b, 1^3+2^3+3^3+............+50^3
Tính
1)A=1×2×3+2×3×4+.....+48×49×50
2)B=1×2+2×3+3×4+......+49×50
A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50
ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)
= 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
= 48 x 49 x 50 x 51
suy ra A = (48 x 49 x 50 x 51) : 4
= 12 x 49 x 50 x 51
nhớ k cho mik nha rùi mik lm nốt cho
A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50
ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)
= 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
= 48 x 49 x 50 x 51
suy ra A = (48 x 49 x 50 x 51) : 4
= 12 x 49 x 50 x 51
Tính: 1*2 + 2*3 + 3*4 + ........ + 50*51
12 + 22 + 32 + ....... + 502
1/ S=1.2+2.3+3.4+...+50.51
=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3
=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)
=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)
=> 3S=50.51.52 => S=50.51.52:3=44200
Đáp số: 44200
2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)
=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)
=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275
A=42925
Đáp số: 42925
Tính: 1*2 + 2*3 + 3*4 + ........ + 50*51
12 + 22 + 32 + ....... + 502
a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51
3S=1*2*3+2*3*3+3*4*3+....+50*51*3
3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)
3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51
3S=50*51*52
S=(50*51*52)/3=442000
b,Ta có 12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)
=> 12 + 22 + 32 + ....... + 502= \(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)
=\(\frac{50\cdot51\cdot101}{6}\)= 42925
Tính
C=1^2+2^2+3^2+... +99^2
D=1^3+2^3+3^3+.. +50^3
Tính
\(S^4=1^2+2^2+3^2+...+49^2+50^2\)
\(S^5=1^3+2^3+3^3+...+49^3+50^3\)
S4 = 12 + 22 + 32 + ... + 492 + 502
S4 = 1 + 2 ( 1 + 1 ) + 3 ( 2 + 1 ) + ... + 49 ( 48 + 1 ) + 50 ( 49 + 1 )
S4 = 1 + 1.2 + 2 + 2.3 + 3 + ... + 48 . 49 + 49 + 49 . 50 + 50
S4 = ( 1 + 2 + 3 + ... 49 + 50 ) + ( 1.2 + 2.3 + ... + 48 . 49 + 49 . 50 )
đặt A = 1 + 2 + 3 + ... 49 + 50
Ta tính được : A = 1275
đặt B = 1.2 + 2.3 + ... + 48 . 49 + 49 . 50
3B = 1.2.3 + 2.3.3 + ... + 48.49.3 + 49.50.3
3B = 1.2.3 + 2.3.(4-1) + ... + 48.49.(50-47) + 49.50.(51-48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ... + 48.49.50 - 47.48.49 + 49.50.51-48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
=> S4 = 41650 + 1275 = 42925
S5 = 13 + 23 + 33 + ... 493 + 503
S5 = 1 + 22 ( 1 + 1 ) + 32 ( 2 + 1 ) + ... 492 ( 48 + 1 ) + 502 ( 49 + 1 )
S5 = 12 + 1.22 + 22 + 2.32 + 32 + ... + 48.492 + 492 + 49.502 + 502
S5 = ( 12 + 22 + 32 + ... + 492 + 502 ) + ( 1.22 + 2.32 + ... + 48.492 + 49.502 )
đặt Y = 12 + 22 + 32 + ... + 492 + 502
Y = 42925
đặt M = 1.22 + 2.32 + ... + 48.492 + 49.502
M = 1.2.(3-1) + 2.3.(4-1) + ... + 48.49.(50-1) + 49.50.(51-48)
M = (1.2.3+2.3.4+...+48.49.50+49.50.51)-(1.2+2.3+...+48.49+49.50)
đến đây đơn giản rồi
Tính
S4=12+22+32+...+492+502S^4=1^2+2^2+3^2+...+49^2+50^2
S5=13+23+33+...+493+503S^5=1^3+2^3+3^3+...+49^3+50^3
a) Hãy tính : [-1/7];[3,7];[-4];[-43/10]
b) Cho x = 3,7. So sánh :
A = [x] + [x+1/5] + [x+2/5] + [x+3/5] + [x+4/5] và B = [5x]
c) Tính [100/3] + [100/32] + [100/33] + [100/34]
d) Tính [50/2] + [50/22] + [50/23] + [50/24] + [50/25]
Giúp mik nha
Toán HS giỏi đấy
Thank you
\(\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}.....\frac{50^2-1}{50^2}\)
Tính biểu thức trên
\(=\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(=\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot\frac{24}{5\cdot5}\cdot....\cdot\frac{2499}{50\cdot50}\)
\(=\frac{\left(2\cdot4\right)\left(3\cdot5\right)\left(4\cdot6\right)...\left(49\cdot51\right)}{\left(3\cdot3\right)\left(4\cdot4\right)\left(5\cdot5\right)...\left(50\cdot50\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(3\cdot4\cdot5\cdot...\cdot50\right)\left(3\cdot4\cdot5\cdot...\cdot50\right)}\)
\(=\frac{2\cdot51}{50\cdot3}\)
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1