tìm số abc,biết b=1/3*a=3*c
Tìm 3 chữ số a, b, c biết 1/ (a+b+c) = 0,abc
1/(a+b+c) = 0,abc tức là 1000/(a+b+c) = abc. Tức (a+b+c) là ước số của 1000. abc>100 nên ước số (a+b+c) < 1000/100=10. các ước số <10 của 1000 bao gồm: 1,2,4,8. (a+b+c) > 3 nên chỉ có thể là 4 hoặc 8. thử 2 trường hợp: a+b+c=4, abc=1000/4=250 không thỏa mãn. a+b+c= 8, abc=1000/8=125. đúng thỏa mãn yêu cầu đầu bài.
Tìm 3 chữ số a, b, c biết 1/ (a+b+c) = 0,abc
1/(a+b+c) = 0,abc
tức là 1000/(a+b+c) = abc.
Tức (a+b+c) là ước số của 1000.
abc>100 nên ước số (a+b+c) < 1000/100=10.
các ước số <10 của 1000 bao gồm: 1,2,4,8.
(a+b+c) > 3 nên chỉ có thể là 4 hoặc 8.
thử 2 trường hợp:
a+b+c=4, abc=1000/4=250 không thỏa mãn.
a+b+c= 8, abc=1000/8=125. đúng thỏa mãn yêu cầu đầu bài.
1.Tìm số có 3 chữ số abc biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\)biết \(\overline{abc}\)chia hết cho 9 và a=3+c+1
ồ cuk khó nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
1.Cho S=3+32+33+...+3100.Tìm c/s tận cùng của S
2.Tìm các STN a,b,c thỏa mãn a+b+c=abc(abc là một số)
3.a)tìm 2 STN a,b biết:
BCNN(a,b)=300
ƯCLN(a,b)=15
B)Tìm x,y thuộc N biết:(x+1).(2y-5)=443
1.Tìm số có 3 chữ số \(\overline{abc}\)biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\) biết \(\overline{abc}\) chia hết cho 9 và a=3+c+1
Tìm số abc có 3 chữ số khác nhau và khác 0 biết:
a/10 + b/100 + c/1000 = 1/a+b+c
\(\Rightarrow\dfrac{100xa+10xb+c}{1000}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\dfrac{\overline{abc}}{1000}=\dfrac{1}{a+b+c}\Rightarrow\overline{abc}=\dfrac{1000}{a+b+c}\)
Do \(\overline{abc}\) là số có 3 chữ số \(\Rightarrow\overline{abc}>100\)
\(\Rightarrow\dfrac{1000}{a+b+c}>100\Rightarrow a+b+c< 1000:100=10\)
Do \(\overline{abc}\) là số nguyên \(\Rightarrow1000⋮a+b+c\)
=> a+b+c=2 hoặc a+b+c=4 hoặc a+b+c=5 hoặc a+b+c=8
Thử với từng trường hợp ta có a+b+c=8 => \(\overline{abc}=125\) thỏa mãn yêu cầu của đề bài
tìm a,b,c biết a!+b!+c!=abc (abc là số có 3 chữ số)
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5.
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Ta có: 5! +5! +5! = 360 (không thỏa) => abc ≤ 5! + 5! + 4! =264
=> a ≤ 2 => a = 2 hoặc a = 1
+a = 2
5! + 2! + x! = 25x hoặc 2x5 . Thử x = 1; 2; 3; 4; 5 ta thấy đều không thỏa.
+a = 1
1! + 5! + x! = 15x hoặc 1x5. Thử x = 1;2;3;4;5 ta tìm được x = 4 thì 1! + 4! + 5! = 145 (thỏa mãn).
Vậy a = 1; b = 4; c = 5
1! + 4! + 5! = 145 là trường hợp duy nhất thỏa đề
cho a,b,c là các số dương tm abc=1. Tìm gtln của bt 1/(a^3+b^3+abc) + 1/(b^3+c^3+abc) + 1/(c^3+a^3+abc)
Với các số dương x;y ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
Áp dụng:
\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)
\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)
\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(P_{max}=1\) khi \(a=b=c=1\)
Tìm 3 số hạng liên tiếp a,b,c của 1 cấp số nhân biết a+b+c=14và abc=64