Trong hình thang vuông ABCD với các đáy AD, BC có ∠ A = ∠ B = 90 ° , ∠ (ACD) = 90 ° . BC = 4cm, AD = 16cm. Hãy tìm các góc C và D của hình thang.
Trong hình thang vuông ABCD với các đáy là AD, BC có \(\widehat{A}=\widehat{B}=90^0;\widehat{ACD}=90^0;BC=4cm;AD=16cm\). Hãy tìm các góc C và D của hình thang ?
Bài 1 : Cho hình thang cân ABCD . Đáy nhỏ AB bằng cạnh bên BC và đường chéo vuông góc với cạnh bên AD .
a , Tính các góc của hình thang cân .
b , Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ .
Bài 2 : Cho hình thang vuông ABCD ( \(góc A = góc D = 90 độ\)) có BC =10 cm , góc M và góc N theo thứ tự là trung điểm của AD và BC , khoảng cách từ góc M đến BC bằng nửa AD . Tính độ dài MN .
1) a) Do ABCD là hình thang cân => góc D = góc C ; góc B = góc A
Trong t/g ABC có : góc A = 90 độ => góc D + góc C2 = 90 độ
Trong t/g ABC có AB = BC ( gt ) => t/g ABC cân tại B => góc A1 = góc C1
Ta có góc A = 90 độ + góc A1 = góc D + góc C2 + góc C1 = góc C + góc C = 2C
Mà :
A + B + C + D = 360 độ = 2A + 2C = 4C + 2C = 6C => góc C = 360 độ : 6 = 60 độ
=> góc C = góc D ( = 60 độ ) ; góc A = góc B ( = 120 độ )
Bài 1: Hình thang ABCD (AB//CD) có AB=AD+BC. Chứng minh rằng các tia phân giác của các góc C và D gặp nhau tại 1 điểm thuộc đáy AB
Bài 2: Hình thang vuông ABCD (góc A = góc D= 90°)có AB =4cm, CD=9cm, BC=13cm. Tính AD
Bài 3: hình thang vuông ABCD (góc A=góc D=90°)có AB =9cm,CD=15cm, AC=17cm. Tính độ dài cạnh bên
cho ht cân ABCD có đáy nhỏ Ab=cạnh bên BC đường chéo ac vuông góc với cạnh bên ad.
a, tính các góc của hình thang cân
b,CMR trong hình thang ABCD đáy lớn gấp dôi đáy nhỏ
Gọi E là trung điểm AD
→ AE = ED = \(\frac{1}{2}\) AD
Mà BC = \(\frac{1}{2}\)AD (gt)
⇒ AE = BC (= \(\frac{1}{2}\) AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆA = ˆB = 90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACE = 45o
⇒ ˆACD = 90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIM= ˆNIC (2 góc đối đỉnh)
ˆIMA = ˆICN
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINI= IMICI (cặp cạnh t/u)
⇒ AIIM = NIIC
Xét ΔAIN và ΔMIC có:
AIIM = NIIC
ˆAIN = ˆMIC(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANI = ˆICM = ˆACB = 45o (Vì ΔABC vuông cân tại B)
→ ˆANM= 45o
Lại có: ˆAMN = 90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)
k cho mình nha
Hình thang ABCD có AD//BC ,góc A=góc B=90 độ ,BC=2AB =2AD.Gọi M là một điểm trên đáy nhỏ AD,kẻ Mx vuông góc với BM,Mx cắt CD tại N.Chứng minh MB=MN
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A,B với AB=BC=a , AD=2a , SA vuông góc (ABCD) và SA = a√2 a) Cminh các mặt bên của hình chóp là các tam giác vuông
1.cho hình thang ABCD biết góc A=góc B=90 độ AB=BC=1/2AD
a, tính các góc của hình thang
b,cm AC vuông góc với CD
c, tính chu vi của hình thang biết AB=3cm
2.cho hình thang ABCD (AB SONG SONG CD)trong đó đáy CD=BC+AD
CMR 2 tia phân giác của góc A VÀ GÓC B cắt nhau tại 1 điểm thuộc cạnh đáy CD
GIÚP MK NHA THANKS CÁC BN NHÌU MOAH
Bài 2:
Gọi AI là phân giác của góc BAD
Xét ΔDAI có góc DAI=góc DIA
nên ΔDIA cân tại D
=>DA=DI
=>CB=CI
=>ΔCBI cân tại C
=>góc CBI=góc CIB
=>góc CBI=góc ABI
=>BI là phân giác của góc ABC(ĐPCM)
cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath