Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để điểm cực tiểu của đồ thị hàm số y = x 3 + x 2 + m x − 1 nằm bên phải trục tung. Tìm số phần tử của tập hợp − 5 ; 6 ∩ S
A. 2
B. 5
C. 3
D. 4
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để điểm cực tiểu của đồ thị hàm số y= x3+ x2+ mx-1 nằm bên phải trục tung. Tìm số phần tử nguyên của tập hợp - 5 ; 6 ∩ S
A. 2
B. 5
C. 3
D. 4
Ta có đạo hàm y’ = 3x2+ 2x+ m.
Hàm số có cực trị khi ∆ ' = 1 - 3 m > 0 ⇔ m < 1 3
Do hàm số có a=1>0 ⇒ x C T > x C D
Yêu cầu bài toán trở thành phương trình y’ = 0 có ít nhất 1 nghiệm dương
Do x 1 + x 2 = - 2 3 < 0 x 1 x 2 = m 3 ⇒ m < 0 là giá trị cần tìm.
Vậy - 5 ; 6 ∩ S = ( - 5 ; 0 )
Mà m nguyên nên chọn -4; -3; -2; -1. Có 4 giá trị thỏa mãn.
Chọn D.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để điểm cực tiểu của đồ thị hàm số y = x 3 + x 2 + m x - 1 nằm bên phải trục tung. Tìm số phần tử của tập hợp - 5 ; 6 ∩ S
A. 2
B. 5
C. 3
D. 4
Đáp án D
Xét hàm số y = x 3 + x 2 + m x - 1 có y ' = 3 x 2 + 2 x + m , ∀ x ∈ ℝ
Để hàm số có 2 điểm cực trị ⇔ y ' = 0 có 2 nghiệm phân biệt ⇔ 1 - 3 m > 0 ⇔ m < 1 3
Gọi x 1 , x 2 lần lượt là các điểm cực tiểu và cực đại của hàm số đã cho
Theo Viet, ta có x 1 + x 2 = - 2 3 x 1 x 2 = m 3 mà x 1 > 0 suy ra x 1 x 2 = m 3 < 0 ⇔ m < 0
Kết hợp m ∈ - 5 ; 6 mà m ∈ ℤ → m = - 4 ; - 3 ; - 2 ; - 1
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
A. 3
B. 10
C. 6
D. 5
Đáp án C
Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Đáp án A.
Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều.
Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị
Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m
Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.
Để đồ thị hàm số có 5 cực trị
=>S = {3;4;5} => 3+4+5 = 12
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số y = f x - 2018 + m có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
A. 9
B. 7
C. 12
D. 18
Gọi S là tập tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = − x 3 + 3 x 2 + 3 m 2 − 1 x − 3 m 2 − 1 có điểm cực đại và điểm cực tiểu, đồng thời khoảng cách giữa các điểm cực trị đó không vượt quá 30 13 . Số phần tử của tập hợp S là
A. 7
B. 4
C. 6
D. 5
Gọi S là tập tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = - x 3 + 3 x 2 + 3 m 2 - 1 x - 3 m 2 - 1 có điểm cực đại và điểm cực tiểu, đồng thời khoảng cách giữa các điểm cực trị đó không vượt quá 30 13 . Số phần tử của tập hợp S là
A. 7
B. 4
C. 6
D. 5