Cho hình chóp S . A B C có đáy là A B C là tam đều cạnh a . Hình chiếu vuông góc của S lên A B C trùng với trung điểm H của cạnh B C . Biết tam giác S B C là tam giác đề. Tính số đo của góc giữa S A và A B C
A. 30 0
B. 75 0
C. 60 ∘
D. 45 0
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, A B C ^ = 30 0 , SAB là tam giác đều cạnh a, hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm của cạnh AB. Thể tích của khối chóp S.ABC là:
A. a 3 3 9
B. a 3 18
C. a 3 3 3
D. a 3 12
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a . Hình chiếu vuông góc của S lên (ABC) là trung điểm của cạnh BC. Biết DSBC đều, tính góc giữa SA và (ABC)
A. 60 °
B. 45 °
C. 90 °
D. 30 °
Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S S trên đáy là điểm H nằm trên cạnh AC sao cho A H = 2 3 A C , mặt phẳng (SBC) tạo với đáy một góc 60 0 .Tính thể tích khối chóp S. ABC
A. a 3 3 12
B. a 3 3 36
C. a 3 3 24
D. a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng (SBC) là 6 4 , từ B đến mặt phẳng (SAC) là 15 10 từ C đến mặt phẳng (SAB) là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác ABC. Thể tích khối chóp S.ABC bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S . A B C có đáy A B C là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng S B C là 6 4 , từ B đến mặt phẳng S A C là 15 10 ; từ C đến mặt phẳng S A B là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác A B C . Thể tích khối chóp S . A B C bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S . A B C có đáy là tam giác đều cạnh a , hình chiếu vuông góc của đỉnh S trên đáy là điểm H nằm trên cạnh AC sao cho A H = 2 3 A C , mặt phẳng (SBC) tạo với đáy một góc 60 0 .Tính thể tích khối chóp S.ABC
A. a 3 3 12
B. a 3 3 36
C. a 3 3 24
D. a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính bán kính mặt cầu đi qua năm điểm A, B, C, B 1 , C 1 .
A. a 3 2
B. a 3 3
C. a 3 4
D. a 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính bán kính mặt cầu đi qua năm điểm A,B,C, B 1 , C 1 .
A. a 3 2
B. a 3 3
C. a 3 4
D. a 3 6
Đáp án B.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC ⇒ I A = I B = I C (1).
Ta có ∆ S A C = ∆ S A B ⇒ A B 1 = A C 1 . Từ đây ta chứng minh được B 1 C 1 / / B C .
Gọi M là trung điểm của B C ⇒ B C ⊥ S A M ⇒ B 1 C 1 ⊥ S A M .
Gọi H = S M ∩ B 1 C 1 ⇒ H B 1 M B = H C 1 M C , do M B = M C nên H B 1 = H C 1
Mặt phẳng (SAM) đi qua trung điểm H của B 1 C 1 nên B 1 C 1 ⊥ S A M nên (SAM) là mặt phẳng trung trực của B 1 C 1 . Do I ∈ A M ⊂ S A M nên I B 1 = I C 1 (2).
Gọi N là trung điểm của AB, suy ra A B ⊥ I N S A ⊥ I N ⇒ I N ⊥ S A B .
Tam giác A B B 1 vuông tại B 1 có N là trung điểm của AB nên N A = N B 1 = 1 2 A B .
Như vậy ta có các tam giác vuông sau bằng nhau
∆ I N A = ∆ I N B = ∆ I N B 1 ⇒ I A = I B = I B 1 (3).
Từ (1), (2) và (3) suy ra 5 điểm A,B,C, B 1 , C 1 cùng nằm trên mặt cầu tâm I, bán kính R = I A = 2 3 . a 3 2 = a 3 3 (do ABC là tam giác đều và I là tâm đường tròn ngoại tiếp ⇒ I cũng là trọng tâm tam giác ABC).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho HC→ = 2BH→, SA hợp với đáy một góc 60°. Tính thể tích V của khối chóp S.ABC
A. V = a 3 12
B. V = a 3 7 12
C. V = a 3 4
D. V = a 3 3 8
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho HC→ = 2BH→, (SAB) hợp với đáy một góc 60°. Tính thể tích V của khối chóp S.ABC
A. V = a 3 3 24
B. V = a 3 3 12
C. V = a 3 3 4
D. V = a 3 3 6