Cho số phức z = 5 − 4 i . Mô đun của số phức z là
A. 3
B. 41
C. 1
D. 9
Tìm mô đun của số phức
\(D.1\)
Cho số phức z thỏa mãn ( 1+ i) z + 2z = 2. Tính mô-đun của số phức w = z + 2/5 - 4/5i.
A. 1.
B. 2.
C. 2
D. 3
Chọn C.
Đặt z = a+ bi.
Theo đề ra ta có: ( 3 + i) z = 2
Hay ( 3 + i)( a + bi) = 2
Suy ra: 3a - b + ( 3b + a) i = 2
nên z = 3/5 - 1/5i.
Khi đó w = 3/5 - 1/5i + 2/5 - 4/5 i = 1 - i.
Vậy
Cho số phức z = (2+i)(1-i) + 1 +2i. Mô-đun của số phức z là
A. 2 2
B. 4 2
C. 17
D. 2 5
Cho hai số phức z = 5 + 2 i v à z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 5.
B. 3 5
C. 17
D. 37
Chọn đáp án A
Ta có w = z - z ' = 4 + 3 i
⇒ w = 4 2 + 3 2 = 5
Cho hai số phức z = 5 + 2 i và z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 7(cm)
B. 3(cm)
C. 6(cm)
D. 2(cm)
Chọn đáp án B
Gọi các kích thước của khối hộp là a (cm), b(cm), c (cm) với a, b, c là các số nguyên dương.
Từ giả thiết ta có
Lại có 9 = b + c ≥ 2 b c ⇒ b c ≤ 81 4
Mà b, c là các số nguyên dương nên b c ≤ 20
Từ b +c =9
⇒ trong hai số b, c có 1 số lẻ và 1 số chẵn ⇒ bc chẵn.
Từ a = 42 b c và a nguyên dương nên bc là ước nguyên dương của 42.
Nếu bc =6 thì b, c là nghiệm của phương trình X 2 - 9 X + 6 = 0 (loại vì nghiệm của phương trình này không là số nguyên).
Nếu bc =14 thì b, c là nghiệm của phương trình
⇒ b c = 14 thỏa mãn. Vậy chiều cao của khối hộp là a = 42 b c = 3 c m
Cho số phức z thỏa mãn z ¯ + ( 1 - i ) z = 9 - 2 i Tìm mô đun của z.
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z
A. | z | = 34
B. | z | = 34
C. | z | = 34 3
D. | z | = 5 34 3
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z.
A. z = 34
B. z = 34
C. z = 34 3
D. z = 5 34 3
Đáp án B
Phương pháp
Từ giả thiết ta biến đổi để tìm được công thức của z. Dùng định nghĩa để tìm z
Lời giải chi tiết.
Ta có:
Do đó
Cho số phức z thỏa mãn z(2-i) + 13i = 1. Tính mô đun của số phức z.
A. |z| = 34
B. |z| = 34
C. |z| = 5 34 3
D. |z| = 34 3