Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x = x + 4 x trên đoạn [1;3] bằng
A. 65 3
B. 20
C. 6
D. 52 3
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x)=x+4/x trên đoạn [1;3] bằng.
A. 20.
B. 6.
C. 65/3.
D. 52/3.
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số f ( x ) = x + 4 x trên đoạn [1; 3] bằng.
A. 20.
B. 6.
C. .
D. .
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số f ( x ) = x + 4 x trên đoạn [1;3] bằng
A. 65 3
B. 6
C. 20
D. 52 3
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [-2;3] bằng
A. -6
B. -8
C. -12
D. -9
Cho hàm số f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) + f(1) - 2f(2) = f(4) - f(3). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4].
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
Cho hàm số f(x) có đồ thị của hàm số f'(x) như hình vẽ. Biết f(0) + f(1) - 2f(2) = f(4) - f(3). Giá trị nhỏ nhất m, giá trị lớn nhất M của hàm số f(x) trên đoạn [0;4] là
A. m = f(4), M = f(1)
B. m = f(4), M = f(2)
C. m = f(1), M = f(2)
D. m = f(0), M = f(2)
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
Cho hàm số y = f(x) nghịch biến trên ℝ và thỏa mãn [f(x) - x]f(x) = x 6 + 3 x 4 + 2 x 2 , ∀ x ∈ ℝ . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Giá trị của 3M - m bằng
A. 4
B. -28
C. -3
D. 33
Chọn A
Ta có:
Với nên f(x) đồng biến trên ℝ
Với nên f(x) nghich biến trên ℝ
Suy ra: Vì f(x) nghich biến trên ℝ nên và
Từ đây ,ta suy ra:
=> chọn đáp án A
Cho hàm số f(x) liên tục trên đoạn [−1;5] và có đồ thị trên đoạn [−1;5] như hình vẽ bên. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f (x) trên đoạn [−1;5] bằng
A. −1.
B. 4.
C. 1.
D. 2.
Cho hàm số f(x) liên tục trên đoạn [-1;5] và có đồ thị trên đoạn [-1;5] như hình vẽ bên. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn [-1;5] bằng
A. -1
B. 4
C. 1
D. 2
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3