Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2019 lúc 16:47

Chọn A

Đồ thị của hàm số liên tục trên các đoạn , lại có là một nguyên hàm của .

Do đó diện tích của hình phẳng giới hạn bởi các đường:

là: 

.

Tương tự: diện tích của hình phẳng

giới hạn bởi các đường: là: 

.

Mặt khác, dựa vào hình vẽ ta có: .

Từ (1), (2) và (3) ta chọn đáp án A. 

 

( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2017 lúc 7:07

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2019 lúc 12:34

Đáp án D

Ta có:  y ' = 3 a x 2 + 2 b x + c

+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0

+) Đồ thị hàm số f'(x) có điểm cực trị:

1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1

Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:

f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d

do điểm tiếp xúc có hoành độ dương

=>  d = 4 3 => f(x) cắt trục tung tại điểm có tung độ  4 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 8:12

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2018 lúc 10:16

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2019 lúc 18:24

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2017 lúc 14:53

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2018 lúc 11:40

Đáp án B.

Từ đồ thị hàm số y = f ' ( x )  ta có bảng biến thiên:

Từ bảng biến thiên ta có f ( b ) > f ( a ) > 0  

Quan sát đồ thị y = f ' ( x ) , dùng phương pháp tích phân để tính diện tích.

Ta có  ∫ a b f ' ( x ) d x < ∫ a c 0 - f ' ( x ) d x ⇒ f ( c ) < f a

Nếu f c < 0  thì đồ thị hàm số y = f   ( x )  cắt trục hoành tại 2 điểm phân biệt.

Nếu f c = 0  thì đồ thị hàm số  y = f   ( x )  tiếp xúc với trục hoành tại 1 điểm.

Nếu f c > 0  thì đồ thị hàm số  y = f   ( x )  không cắt trục hoành.

Vậy đồ thị hàm số  y = f   ( x )  cắt trục hoành tại nhiều nhất 2 điểm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2019 lúc 11:26

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 16:36

Ta có bảng biến thiên như hình vẽ bên.

Vì f( b) < 0  nên rõ ràng có nhiều nhất 2 giao điểm.

Chọn B.