[x+1/2]+[x+1/4]+[x+1/8]+[x+1/16]=1 tìm x
tìm x , biết :
[ x + 1/2 ] + [ x + 1/4 ] + [ x + 1/8 ] + [ x + 1/16 ] = 23/16
Trả lời
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow4x+\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow4x+\frac{8+4+2+1}{16}=\frac{23}{16}\)
\(\Leftrightarrow4x+\frac{15}{16}=\frac{23}{16}\)
\(\Leftrightarrow4x=\frac{23}{16}-\frac{15}{16}\)
\(\Leftrightarrow4x=\frac{8}{16}\)
\(\Leftrightarrow4x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:4\)
\(\Leftrightarrow x=\frac{1}{8}\)
Vậy x=\(\frac{1}{8}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow4x+\left(\frac{8+4+2+1}{16}\right)=\frac{23}{16}\)
\(\Leftrightarrow4x+\frac{15}{16}=\frac{23}{16}\)
\(\Leftrightarrow4x=\frac{23}{16}-\frac{15}{16}\)
\(\Leftrightarrow4x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:4\)
\(\Leftrightarrow x=\frac{1}{8}\)
Tìm x:
a, (x+1/2) + (x+1/4) + (x+1/8) + (x+1/16)=23/16
b, x*(1/2+1/3+1/6)=425
a x * 4 + [1/2 + 1/4 + 1/8 + 1/6] = 23/16
x * 4 + 25/24 = 23/16
x * 4 = 23/16 - 25/24
x * 4 = 38/96 = 19/48
x = 19/48 / 4
x = 19/172
b x * 1 = 425
x = 425 / 1
x = 425
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1. Tìm x
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1
(x+x+x+x)+(1/2+1/4+1/8+1/16)=1
4x+(1/2+1/4+1/8+1/16)=1
4x+15/16=1
4x=1-15/16
4x=1/16
x=1/16:4
x=1/64
Tìm x biết; ( x + 1/2) + (x+1/4) + (x+1/8) + (x+1/16) = 1
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\text{x}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1\)
\(\Leftrightarrow4\text{x}+\frac{15}{16}=1\)
\(\Leftrightarrow4\text{x}=1-\frac{15}{16}\)
\(\Leftrightarrow4\text{x}=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}:4=\frac{1}{64}\)
(x+1/2)+(x+1/4)+(x+1/8)+(x+16)=1
(x.x.x.x)+(1/2+1/4+1/8+1/16=1
4x+(1/2+1/4+1/8+1/16)=1
4x+(8/16+4/16+2/16+1/16)=1
4x+15/16=1
4x=1-15/16
4x=1/16
x=1/16:4
=>x=1/64
tick cho mk nha bạn
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1
4x+(1/2+1/4+1/8+1/16)=1
4x+15/16=1
4x=1-15/16
4x=1/16
x=1/64
tìm x biết:(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right)=1\)
\(4x+\left(1-\frac{1}{16}\right)=1\)
\(4x+\frac{15}{16}=1\)
\(4x=\frac{1}{16}\)
\(\Rightarrow x=\frac{1}{64}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\frac{15}{16}=1\)
\(4x=\frac{1}{16}\)
\(x=\frac{1}{16}\div4\)
\(x=\frac{1}{64}\)
Vậy ...
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)1
(x+x+x+x)+(1/2+1/4+1/8+1/16)=1
=>4x+15/16=1
=>4x=1:15/16
=>4x=1 x 16/15
=>4x=1/16
=>x=1/16:4
=>x=1/64
Vậy x=1/64
tÌM x
(x + 1/2 ) + ( x + 1/4 ) + ( x + 1/8 ) + ( x + 1/16 ) = 1
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(x\times4+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(x\times4+\frac{15}{16}=1\)
\(x\times4=\frac{1}{16}\)
\(x=\frac{1}{64}\)
Tìm x biết : ( x + 1/2 ) + ( x+1/4 ) + ( x+1/8 ) + ( x+1/16 ) = 1
ta có:(x+x+x+x)+(1/2+1/4+1/8+1/16)=1 4x+15/16=1 4x=1-15/16 4x=1/16 x=1/16:4=1/64 vậy x=1/64 Mình trả lời trước nhé
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\)
\(A=1-\frac{1}{2^4}\)
\(A=\frac{15}{16}\)
Thay A vào đẳng thức ta có
\(4x+\frac{15}{16}=1\)
\(4x=1-\frac{15}{16}\)
\(4x=\frac{1}{16}\)
\(x=\frac{1}{16}\div4\)
\(x=\frac{1}{64}\)
tìm x
[ x + 1/2 ] + [ x + 1/4 ] + [ x + 1/8 ] + [ x + 1/16 ] = 1
(x+1/2) + (x+1/4) + (x+1/8) + (x+1/16) = 1
tìm x