Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
big band
Xem chi tiết
nguyenngoclinh
Xem chi tiết
Trần Tích Thường
Xem chi tiết
An Hoà
2 tháng 11 2018 lúc 19:29

a) Gọi d là UCLN ( a,a-b )

=> a chia hết cho d

     a - b chia hết cho d

=> a - a - b chia hết cho d 

=> b chia hết cho d

Mà UCLN( a , b ) = 1

=> d = 1

Vậy b và a - b là 2 số nguyên tố cùng nhau

Trần Tích Thường
Xem chi tiết
Tập-chơi-flo
2 tháng 11 2018 lúc 19:32

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

bui viet khoa
Xem chi tiết
Lê Thị Mai Phương
Xem chi tiết
Ngô Phương Linh
Xem chi tiết
Trương Tuấn Kiệt
5 tháng 11 2015 lúc 20:14

a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1

Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6

Do m và n nguyên tố cùng nhau nên ta được như sau:

- Nếu m=1 thì a=42 và n=5 thì b=210

- Nếu m=5 thì a=210 và n=1 thì b=42

b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}

c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        3(2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        (6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2

Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1

Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)

 

 

nguyenbathanh
12 tháng 11 2017 lúc 22:26

m n ở đâu

khucdannhi
Xem chi tiết
Phùng Minh Quân
15 tháng 6 2018 lúc 20:03

Gọi \(ƯCLN\left(n^2+n+1;n^2+n-1\right)=d\) ta có : 

\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)

\(\Rightarrow\)\(n^2+n+1-n^2-n+1⋮d\)

\(\Rightarrow\)\(2⋮d\)

\(\Rightarrow\)\(d\inƯ\left(2\right)\)

\(\Rightarrow\)\(d\in\left\{1;-1;2;-2\right\}\)

\(\Rightarrow\)\(ƯCLN\left(n^2+n+1;n^2+n-1\right)=\left\{1;-1;2;-2\right\}\)

Lại có : 

\(n^2+n+1=n\left(n+1\right)+1\)

\(n^2+n-1=n\left(n+1\right)-1\)

Vì tích của hai số tự nhiên liên tiếp là số chẵn nên số liền trước và số liền sau nó là số lẻ 

\(\Rightarrow\)\(ƯCLN\left(n^2+n+1;n^2+n-1\right)=\left\{1;-1\right\}\)

Vậy \(n^2+n+1\) và \(n^2+n-1\) là hai số nguyên tố cùng nhau 

Chúc bạn học tốt ~ 

khucdannhi
15 tháng 6 2018 lúc 19:53

mk đag cần rất gấp!!!!!!!!!!!!

Ai trả lời nhanh nhất mk k cho nha!!!!!!!!!!!!!

Hòa Trần
Xem chi tiết