Gía trị lớn nhất của biểu thức A= \(\frac{6}{\left|x+1\right|+3}\)là
Gía trị của x để biểu thức E =\(2+\frac{3}{\left|7x+5\right|+4}\)đạt giá trị lớn nhất là x = ?
Để E đạt GTLN thì \(\left|7x+5\right|\ge0\) với \(\forall x\in R\)nên
\(\left|7x+5\right|+4\ge0+4=4\)
\(\Rightarrow E=2+\frac{3}{\left|7x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi \(\left|7x+5\right|=0\Leftrightarrow x=-\frac{5}{7}\)
Gía trị nhỏ nhất của biểu thức:
B=\(\frac{1}{2}\left(x-\frac{1}{2}\right)^2+\left|2x-1\right|-\frac{3}{2}\)
Gía trị nhỏ nhất của biểu thức D = \(\frac{12}{6-\left|x+1\right|}\)
Gía trị nhỏ nhất của biểu thức D = \(\frac{12}{6-\left|x+1\right|}\)
ta có:6-|x+1| < 6
=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)
vậy....
Gía trị nhỏ nhất của biểu thức A = \(\frac{-9}{\left|x\right|+3}\) là
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
Gía trị lớn nhất của biểu thức \(B=\frac{3}{5}-3\cdot\left|2x\right|-13\) là ?
Gía trị của biểu thức \(B=\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}\)là
\(B=\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}=\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{6}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{6}}=\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{6}}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\right)}=\frac{1}{5}\)
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)